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RECOMMENDATIONS FOR NUMERICAL SOLUTION OF REINFORCED-
'~ PANEL AND FUSELAGE-RING PROBLEMS

By N. J. Horr and PauL A. LiBeYy

SUMMARY

Procedures are recommended for solving the equations of equi-
Librium of reinforced panels and 1solated fuselage rings as rep-
resented by the external loads and the operations table established
according to Southwell’s method. From the solution of these
equations the stress distribution can be easily determined. The
recommendations are based on the experience of the past 4 years
wm applying numerical procedures to monocoque stress analysis
at the Polytechnic Institute of Brooklyn Aeronautical Labora-
tories. The method of systematic relaxations, the matriz-cal-
culus method, and several other methods applicable in special
cases are discussed.

Definite recommendations are made for obtaining the solution
of reinforced-panel problems which are generally designated as
shear lag problems. The procedures recommended are demon-
strated in the analysis of @ number of panels, several of which
were discussed in previous PIBAL reports, whereas others are
shown for the first time.

In the case of fuselage rings it is not possible to make definite
recommendations for the solution of the equilibrium equations
Sfor all rings and loadings. Flowever, suggestions based on the
latest experience are made and demonstrated on several rings.

INTRODUCTION

The application of the indireet methods of Cross (refer-
ence 1) and Southwell (reference 2) to the analysis of mono-
coque structures has been shown in a series of investigations
(references 3 to 8) carried out at the Polytechnic Institute
of Brooklyn Aeronautical Laboratories. These indirect
methods are likely to lead to solutions of problems in stress
analysis that are intractable by direct analytical methods
because the structure is tapered, it has large cutouts, its rein-
forcing elements are distributed irregularly, or the like.

The distorted shape corresponding to equilibrium under
the applied loads is determined first in the indirect methods.
From it the stresses, forces, and moments required can be
calculated without difficulty. This approach is justified by
the comparative ease with which the stresses in a complex
structure can be determined for an individual displacement
of one point and with which the final distorted shape of a com-
plex structure can be represented by a summation of such
individual displacements.

The complete structure is considered to be composed of
appropriate elements and its degrees of freedom are the dis-
placements of the several reference points on the boundary

of each element. Each of these points is displaced in turn
and the reactions at the reference points caused by the dis-
placement are listed. If by suitable displacements of all
points the reaction forces and moments are made equal and
opposite to the external loads at each point, the whole struc-
ture is in equilibrium and its distorted shape is determined.

In applying the indirect methods to monocoque structures
the terminology of Southwell (reference 2) has been retained.
Thus, the elements which compose the complete structure
arc ‘‘units” and the determination of the forces and moments
due to a displacement of a boundary point of such units is
termed the “unit problem.”  The magnitudes of these forees
and moments are given by “influence coeflicients.”  The
complete ceffect of a displacement is given in an “operations
table,” and the step-by-step process, which can be em-
ployed to determine the equilibrium distorted shape, is
called the “method of systematic relaxations.” At each
step of this process forces and moments referred to as “re-
siduals” remain unbalanced at cach point in the structure.
A running account of the residuals and of the displacements
or “operations’” undertaken is kept in the “relaxation table.”

The operations table along with the external forces con-
stitutes a system of lincar equations, wlach are equal in
number to the degrees of freedom of the structure and which
have as variables the displacements.  Each equation repre-
sents the condition of equilibrium for the force or moment
associated with one degree of freedom.  When the method of
systematic relaxations is applied an approximate solution
to this system of equations and accordingly an approximate
equilibrium state of the structure are found.

The indirect method of analysis just outlined has been
applied at PIBAL to the reinforced-panel and ring com-
ponents of a monocoque structure as well as to complete
circular cylinders with and without cutouts. In references
3 and 4 the stress distribution in the sheet and stringers of a
reinforced panel was determined under loads applied parallel
to the stringers. Fuselage rings with and without internal
bracing clements were investigated in reference 5. The
determination of the influence coefficients for the ring unit
problem was found to involve considerable computational
work and therefore appropriate graphs and tables are given
in reference 6 to facilitate their calculation. In references 7
and 8 the clements, namely, the reinforced panel and the
ring, are combined into a circular cylinder and the stress
distribution in the cylinder was investigated for the case
when the loading is a pure bending moment.

1




In the application of the indirect-stress-analysis methods
to the problems mentioned the major obstacle has been to
find an approximate solution of the system of equations with
a reasonable expenditure of effort. In each problem it has
been readily possible to establish satisfactory units and to
combine them to represent the complex structure. During
the past 4 years considerable experience has been gained at
PIBAL in overcoming this obstacle to the wider application
of numerical procedures in the analysis of monocoque struc-
tures. On the basis of this experience some recommendations
can be made as to the most expeditious method of solving
reinforced-panel and fuselage-ring problems after the opera-
tions table has been established as described in references 3
to 5.

In many problems solution of the set of linear equations
by means of matrix algebra was found casier and less time
consuming than the determination of the displacements by
systematic relaxations. In other cases special methods, such
as the growing-unit method, proved to be most expeditious.

It is assumed that the reader is familiar with the termi-
nology of Southwell’s relaxation method and with the solu-
tion of the unit problem as well as the establishment of the
operations table for both the reinforced-panel and fuselage-
ring problems. Complete details of these are given in
references 3 to 6.

This work, carried out at the Polytechnic Institute of
Brooklyn, was sponsored by and conducted with the financial
assistance of the National Advisory Committee for Aero-
nautics. Mr. Arnold O. Ostrand contributed the growing-unit
method for reinforced panels. The authors also wish to
acknowledge their indebtedness to the following members of
the staff of the Polytechnic Institute of Brooklyn: Professors
George B. Hoadley and William MacLean of the Depart-
ment of Electrical Engineering for their work on the electric
analogue, Mr. Burton Erickson for carrying out the major
portion of the computations, and Dr. Bruno A. Boley for his
editorial advice.

SYMBOLS

A cross-sectional area of stringer and effective sheet

Ato Q points on a ring or a reinforced panel; group
operations

A* effective shear area of ring section

a distance between adjacent longitudinal stringers

b distance between adjacent transverse stringers

C electrical conductance

E Young’s modulus of elasticity

F tensile foree in stringer; applied external load

G shear modulus of elasticity

H horizontal direction

I moment of inertia of cross section; electrical
current

Ito XX group operations

L length of straight bar or length of arc of curved
bar

M bending moment

N moment acting on a joint

q shear flow

R radial force acting at a joint; electrical resistance

T tangential force acting on a joint
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sheet thickness

displacement of a joint in tangential direction

electrical potential; vertical direction

displacement of a joint in radial direction; dis-
placement of a joint in vertical direction

vertical block displacement

rotation of a joint

magnitude of group operation to be determined

rectangular coordinates

force in y-axis direction

angle subtended by ring segment

section-length parameter (AL 1)

ratio of effective shear area to tension area (A*/A4)

summation
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REINFORCED PANELS
INTRODUCTION

In this scction plane and slightly curved reinforced panels
are discussed when the loads are applied in the planc of the
flat panels or tangentially to the surface of the slightly
curved panels.

In most airplane structures there is a predominant direc-
tion in which the major forces act and in which the major
reinforcing elements lie. When the panel is symmetric and
svmmetrically loaded experience has shown that it suffices
to consider displacements and force equilibrium in the
predominant direction only. Even when the structure or
the loads are nonsymmetric, the displacements and forces
in the transverse direction are usually of secondary impor-
tance but they may be considered in a more refined analysis.

In references 3 and 4 numerical procedures for the deter-
mination of the stress distribution in reinforced panels
subjected to axial stringer loads are developed and demon-
strated on several flat and curved panels with and without
cutouts. The results obtained by mecans of these procedures
are in good agreement with those of tests.

Solution of the system of equations represented by the
operations table and the external forces can be found by
several methods, five of which are described herein. The
various conditions of loading and structure which suggest
the use of one method rather than another are discussed.

RELAXATION METHOD

For most reinforced-panel problems the relaxation method
of solution is the most suitable. Simple group and block
operations lead to a rapid elimination of the residuals and
require little initiative on the part of the computer familiar
with the sequence of step-by-step operations. The method,
however, is not eflicient in the case of panels with many
bays in the direction of the stringer loads or panels with
sheet covering of large shearing rigidity, since large forces
are then introduced into adjacent stringers when one
stringer is balanced. These forces in turn must be liquidated
in successive operations with the consequence that the
procedure becomes time consuming. Also in problems
involving many loading conditions it may be expeditious
to use the electric-analogy method described in the section

entitled ‘“Electric Analogue,” since in the relaxation
method each new loading requires new step-by-step
operations.
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In this section panels are discussed which are not excluded
from application of the relaxation method by the foregoing
considerations. They may be classified according to the
boundary conditions of the stringers into four groups.
Recommendations for each group follow with a fifth sub-
section added containing suggestions for panels in which
transverse forces and displacements are considered. .

(a) Panels with boundary conditions at both ends of
stringers specified in terms of force.—The following two
procedures are recommended for liquidating the residuals on
a panel of this group:

First procedure:

1. Consider each stringer isolated by cutting the sheet and
the transverse reinforcing elements. Select the stringer for
which the algebraic sum of the external forces is the largest.
Displace the entire stringer as a rigid body (block displace-
ment) until this sum vanishes.

2. Balance one end joint of the stringer by displacing the
adjacent joint on the same stringer.

3. After step 2 is completed the end joint is balanced but
the joint that was moved is unbalanced. Displace the third
joint on the same stringer until the second joint is balanced.

4. Continue the procedure until the second end joint is
moved. In thislast step both the end joint and the adjacent
one will be approximately balanced at the same time since
the algebraic sum of all the forces acting upon the stringer
was zero after completion of step 1 and this equilibrium has
been disturbed only slightly by the shear forces transmitted
by the sheet during the individual operations.

5. Stringer 1 is now approximately balanced. Carry out
the same procedure with the other stringers of the pancl
successively.

6. When all the stringers are approximately balanced,
return to the first stringer and balance it again by under-
taking steps 1 to 4. Repeat the procedure with the other
stringers until all the residual forces can be considered negli-
gible for enginecering purposecs.

Second procedure:

1. Counsider each stringer isolated by cutting the sheet and
the transverse reinforcing elements. Select the stringer for
which the algebraic sum of the external forces is the largest.
Displace the entire stringer as a rigid body (block displace-
ment) until this sum vanishes.

2. Displace one end point of this stringer so as to balance
the residual thereon.

3. Displace by equal amounts the adjacent joint on the
same stringer and the end joint which was balanced in step
2 so0 as to balance this second joint. The equilibrium of the
end joint will be disturbed only by a small amount due to
shear in the sheet.

4. Displace by equal amounts the third joint on the same
stringer and the two joints that were placed in approximate
balance by the operation described in step 3 so as to balance
this third joint.

5. Continue this procedure until the joint next to the
midjoint of the stringer is balanced by equal displacements
of all the joints situated between it and the end joint first
displaced.

~

6. Repeat the process described in steps 2 to 5, starting
from the other end joint of the stringer and continuing to
the midjoint from this direction. After this step is completed
this stringer will be in approximate balance, the only resid-
uals being those introduced by shear in the sheet.

7. Consider next the stringer on either side of the approxi-

_mately balanced stringer. Undertake.a block displacement

so as to equilibrate externally the stringer under its residual
forces.

8. Start at one end joint of this stringer and apply steps
2 to 6. This second stringer will be placed in approximate
balance thereby, while the balance of the first stringer will
be disturbed only through the shear in the sheet.

9. Either return to the first balanced stringer or proceed
to the next stringer on the other side. Each newly consid-
ered stringer is first externally equilibrated under the external
and residual forces by a block displacement. Then from
cach free end the residuals are balanced by group displace-
ments involving equal displacements of all the joints situated
between the one in question and the free end. Continuc to
balance individual stringers until all are balanced.

The relaxation tables for the panel shown in figure 1, for
which table 1 is the operations table, are used to demon-
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¥1GURE 1.—Reinforced panel with conditions at both ends specified in terms of force.

strate the first and second procedures and are given as tables
2 and 3, respectively. It will be noticed that this operations
table considers the displacements of only the joints on the
left half of the panel. The panel is symmetrical and is
symmetrically loaded. Therefore, the displacements in the
balancing process are undertaken symmetrically and only
those of the left side joints need be considered, those of the
right being correspondingly equal. Since this panel has
only three bays along each axially loaded stringer, the
internal balancing process is undertaken from one end of
the stringer only.-
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(b) Panels with boundary conditions at one end of stringers
specified in terms of force and at other in terms of displace-
ment.—This type of problem occurs, for instance, when one
end of the panel is attached to a rigid body which is either
held fixed in its position or is displaced a given amount.
The recommended procedure for panels of this group is the
same as the second procedure for panels in case (a) with
two exceptions: (1) No block displacements are needed (or
possible) to equilibrate the stringers externally and (2) the
internal balancing process can be started only from the one
free end of cach stringer.

The method is demonstrated on the panel shown in figure 2.
It is identical with the panel used for case (a) with the excep-
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Frovre 2.—Reinforeed panel with conditions at one end gpecified in terms of foree and at
the other in terms of displacements.

tion of the fixed lower ends of the vertical stringers.  The
operations table is identical with that of the previous panel
except that no block and no vy- and ve-displacements are ad-
missible.  The relaxation table is given as table 4.

(¢) Panels with boundary conditions at both ends of
stringer specified in terms of displacement.—Experience on
pancls of this type indicates that, although no systematic
process of balancing the residuals can be recommended, the
direct relaxation process is rapidly convergent. By starting
from the midpoint joints on a stringer and by balancing
successive joints toward the two fixed ends, the equilibrium
position can be approximated rapidly. A further sugges-
tion regarding this type of panel is contained in the later
section *‘Niles Tables.”

(d) Panels with irregularly specified boundary condi-
tions.— For such panecls a combination of the methods
discussed under cases (a), (b), and (¢) is recommended. By
judicious use of block and group operations similar to those
of cases (a) and (b) rapid convergence of the relaxation
procedure will be obtained.

(e) Panels in which transverse displacements and forces
are considered.—There are two general procedures for

treating panels in which the transverse displacements and
forces, usually considered negligible, are treated. These are
described in the following paragraphs:

First procedure:

The procedure discussed under cases (a) and (b) can be
applied to panels with cutouts. The stringers are approxi-
mately balanced in the direction of the major axial forces
by these procedures and then the residuals normal to this
direction are considered. The same step-by-step operations
can be applied in balancing transverse stiffeners under these
transverse axial forces. The process of first balancing the
stringers in one direction, then balancing the stiffeners in
the normal direction, and then returning to the originally
balanced stringers will be quite rapidly convergent for
panels with sheet of low shearing rigidity.

Second procedure:

For panels with cutouts requiring consideration of the
transverse forces another procedure, which is demonstrated
in reference 4, can be used. The panel is first considered to
have continuous sheet and stringers, as if the cutout did not
exist, and the displacements for equilibrium of this panel
under the external loads are determined by the usual meth-
ods. These displacements are then applied as a first approxi-
mation to the distorted shape of the actual panel with cut-
outs. Displacements leading to a closer approximation are
then undertaken.  This procedure is found to be reasonably
successful for the cases investigated in reference 4.

MATRIX-CALCULUS METHOD

The operations table together with the external forces can
be considered as a system of linear equilibrium equations
with the magnitudes of the displacements as the unknowns.
Therefore, the methods of matrix caleulus can be applied to
find the solution of this system by direct mathematical
means. The method deseribed in reference 9 is recom-
mended since a check on the caleulations 1s maintained at
cach step in the process of solution.

Matrix methods of solution have several advantages.
After the operations table is established by trained engineer-
ing personnel, the solution can be obtained by computing
personnel familiar with the matrix-caleulus method. Under
some conditions this economic advantage may be important.
For reinforced panels with sheet of high shearing rigidity
the relaxation procedures are slowly convergent even when
the recommendations given in the preceding section are ob-
served.  The matrix-caleulus method is not affected by this
physical characteristic of the structure.

When the number of equations is greater than 30 or 40,
the work of computation becomes inconveniently large.
Therefore, for panels having a sheet covering of small shear-
ing rigidity relaxation methods are recommended. When
the sheet covering is very rigid in shear the matrix method
is likely to be more advantageous because the routine opera-
tions of the matrix method can always be carried out if
enough time 1s allowed.

The equations of equilibrium for the panel shown in figure
1 are given by table 1 and are presented as follows to illus-
trate how the operations table and the external forces can
be considered as a system of equilibrium equations:
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In considering the operations table and the external forces ’
as a system of equilibrium equations, care must be taken to 8"
restrain cnough joints so that the position of the panel as a
rigid body is fixed. In the present case »4 and vp are as- \l, R S T u
sumed to be zero, and since only displacements in the y- 7SS 7

direction are considered in this problem, this restraint is
sufficient.
GROWING-UNIT METHOD

For reinforced panels with sheet of high shearing rigidity
or with a large number of bays in the direction of the axial
forces, the relaxation procedure is not rapidly convergent.
In such problems either the matrix-calculus or the growing-
unit method is recommended. The latter can be applied
only to panels the boundary conditions of which are specified
in terms of force at least at one end of the stringers.

The growing-unit. method applied to reinforced panels is
as follows: The joint at the free end of an arbitrarily selected
unbalanced stringer, called hereinafter the principal joint
and the principal stringer, respectively, is displaced so as to
liquidate the residual on this joint. At the same time the
joints lying on adjacent parallel stringers and the same
transverse stiffener are displaced so that the residuals that
would be otherwise introduced by shear from the balancing
of the principal joint as well as any external forces applied
to these joints are likewise liquidated. 1In the second opera-
tion the next joint on the principal stringer is relaxed while
the previously balanced joints on the first transverse stiffener
and the joints on the second transverse stiffencr are kept in
balance by suitable displacements. After this second opera-
tion no residuals remain at the joints of the first two trans-
verse stiffeners. After a sufficient number of repetitions of
the procedure all residuals will be confined to reaction points
or will be liquidated; the panel will then be in equilibrium.

This procedure is demonstrated on the pancl shown in
figure 3. The physical properties of the panel arc the same
as those of the previously discussed panels except for the
additional bay in the direction of the axial forces. Actually
the convergence of the relaxation method for this panel

would be quite rapid, but for convenience the growing-unit |

method, applicable when this convergence is slow, is demon-
strated thereon. Table 5 is the operations table for this
panel and contains not only the individual operations but
also the group opecrations of the growing-unit method.

|
FI6URE 3.—Reinforced panel with 12 bays.

Table 6 is the relaxation table in which these group opera-
tions arc used.

The group operations given in table 5 require some ex-
planation. In order to avoid introducing a 1 z-residual
when joint A is relaxed by application of operation (1), a
vp-displacement is applied, the magnitude of which can be
calculated from the cquation

—55.2054+2.00=0 @)

Thus operation (9) is vy=(2/55.2)=0.0362 and (10) is a
group operation equal to the sum of operations (1) and (9),
which liquidates the residual Y, without introducing a
Y z-unbalance.

After operation (10) is used, unbalances exist at joints
E and F, that is, on the second transversc stiffener. In
order to balance these without disturbing the recently
established balance at A and B, two group operations are
developed: One permitting the balancing of E and one per-
mitting the balancing of F. The magnitudes of v, and vg
required to maintain the balance of A and B when a displace-
ment of vg=1 is undertaken are given by the following
cquations:

—50.8v,+2.0005+46.8=0
®3)

2.0004—55.2v51+2.00=0

These are satisfied by v,=0.921, operation (11), and vz=
0.0695, operation (12). Operation (13) is therefore estab-
lished as the sum of operations (3), (11), and (12). The
magnitudes of v and v, required to maintain the balance of
A and B when a displacement of vz=1 is undertaken are
given by the following equations:

—50.80,+2.0005+2.00=0
} 4)

2.00v4—55.2054-51.2=0
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These are satisfied by »,=0.0758, operation (14), and vp=
0.923, operation (15). Operation (16) is the sum of opera-
tions (4), (14), and (15). Since group operations (13) and
(16) both introduce Y- and Yz-forces, the magnitudes z;;
and z; of these groups required to liquidate the —111-pound
and —9-pound residuals at E and F, respectively, are given
by the following equations:

—58.3Z13+9.4$15_1 11=0
% (5)

9.41:13—62-63315—9-_—0

Thus x;3=—1.975 and x,=—0.444. Joints E and F are
balanced without disturbing the balance of A and B by the
use of these multiples of operations (13) and (16).

In eliminating the residuals at joints J and K multiples of
operations (13) and (16) are applied since these operations
permit displacements of E and F to be undertaken while the
balance at A and B is left undisturbed. When joint J is
displaced a unit amount, multiples of operations (13) and
(16), defined by the following equations, are used so that
the balance at A, B, E, and F is maintained:

—58.31‘13+94116+468=0
TR

9.4:1‘13——62.6Z16+2.00=0

The solution to these equations is x;;=0.828, operation (17),
and z,;=0.158, operation (18). Operation (19) is the sum
of operations (5), (17), and (18).

In a similar manner all the individual and group displace-
ments described in table 4 are found. It may be mentioned
that in the present example no shearing stresses were set
up in the middle bays because of the symmetry of structure
and loading. The original operations table was already
established in a manner which complied with these require-
ments of symmetry. When such is not the case or when
there is a greater number of stringers in the panel, displace-
ments of principal stringer joints will, in general, cause
residuals to appear at more joints so that three or more,
rather than two, simultaneous equations have to be solved
at each step.

NILES TABLES

In reference 10, Niles demonstrates for the solution of rein-
forced-panel problems a method which essentially parallels
the previously deseribed relaxation method. The Niles
method is a procedure for balancing a stringer by the use of
tables which give the displacements of each joint on the
stringer required to liquidate a residual on a given joint of
the stringer. The tables are worked out for various end
conditions and sheet shearing rigidities.

Since reference 10 contains tables only for sheet of rela-
tively low shearing rigidity, the Niles method is limited in
this respect in the same way as the relaxation method.
However, the tables can be employed on stringers with the
boundary conditions at both ends specified in terms of dis-
placement; for such problems no step-by-step routine relaxa-
tion method has been recommended. Also by use of the
tables exact balance of a stringer is gained after a single
displacement of each joint, whereas in the relaxation method,

because of the shear, small unbalances remain after each
joint is moved.

On the other hand, the relaxation method can be applied
to stringers with irregularly spaced joints for which no tables
were set up by Niles.

Since in reference 10 several examples of the procedure are
given, no application of the Niles method is shown herein.

ELECTRIC ANALOGUE

Another convenient method of solving the problem of force
distribution in a reinforced panel is that in which the voltages
are measured in an electric network which is so constructed
as to make it a complete analogue of the reinforced panel.
When suitable electric equipment is available, an analogous
network can be hooked up and tested with very little work.
A particularly attractive property of the stress-analysis
procedure by means of clectric measurement is the ease with
which the effect upon the stress distribution of changes in
loading and in dimensions of the various structural elements
of the reinforced panel can be investigated. This permits
the development of an efficient design with little analytic
work.

The analogy between the forces transmitted through the
different structural elements of the reinforced panel and the
currents flowing through the various branches of the direct-
current network can be explained with the aid of figures 4
and 5. The problem investigated is the so-called ‘“‘one-
dimensional shear lag.” 1t is assumed that the transverse
stiffeners are infinitely rigid so that the vertical, or longi-
tudinal, displacements » alone need to be determined. The
portion of the sheet covering considered effective in tension
or compression is added to the cross-sectional area of each
stringer and the panels of sheet are assumed to carry shear
stresses only. A consequence of these assumptions is that
the shearing stress must be constant in cach panel.
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FicurE 4.—TForces transmitted through structural elements of
reinforced panel.
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FIGURE 5.—Currents flowing throngh branches of
direct-current network analogous to reinforced
pancl of figure 4.

The analogous direct-current network contains as many
binding posts as the number of joints in the reinforced panel.
Adjacent binding posts are connected by conductors having
prescribed resistances R, Predetermined clectrie currents 7,
which correspond to the forces F applied to joints A and B
of the reinforced pancl, are introduced into the network at
points A and B.

It is now recalled that in the relaxation method the joints
of the panel are first assumed to be rigidly fixed to a rigid
wall behind the panel.  The external loads are first applied
to these rigid pegs, referred to as the “constraints.”” The
panel is obviously in equilibrium under these conditions but
this artificial equilibrium is entirely different from that pre-
vailing in the actual panel, which is not attached to any rigid
wall. The actual state of cquilibrium is approached by the
step-by-step procedure of the relaxation method, in cach
step of which one single constraint is removed and the cor-
responding joint is displaced until it reaches its equilibrium
position in the system in which all the other joints are still
rigidly fixed.

For instance when joint 1 of the reinforced panel is moved
through a distance » in the positive direction, this displace-
ment imposes forces upon all the adjacent joints numbered

from 2t0 9. Three typical forces are given by the equations:
Fy=v E;){l— %Zt> @

Fa=0 & ®)

Fy=v C;_I;t (9)

863931—50-—2

where

Fy, Fy, Fy forces acting upon joints 8, 9, and 6, respective-
ly, because of displacement of joint 1

B modulus of elasticity of stringer
aq . shear modulus of sheet

t thickness of sheet

v displacement of joint 1

In the case of the analogous network it can be assumed
that the potential of each binding post is zero at the outset.
If there is no potential difference, no current flows between
the posts. It can be imagined that the currents introduced
at points A and B are taken out of the system by means of
some imaginary conductors. However, the actual distribu-
tion of currents in the network prevails without the aid of
the imaginary conductors. This actual state can be
approached also by means of a step-by-step, approximation-
type calculation. For instance it can be assumed first that
the potential of binding post 1 is elevated to the value V,
After this change there is a potential difference between
binding posts 1 and 8 and consequently a current will flow
from post 1 to post 8. The magnitude of this current can
be calculated from the equation

Iy =V/Ry=0CyV (10)

where Rg is the resistance and (5 =1/Ry; is the conductance
of the conductor between posts 1 and 8. Similarly the cur-
rent flowing from post 1 to post 9 is

Ipy=CqV (11)
The current flowing from post 1 to post 6 is

I61:OS1V <12)

Comparison of equations (7) to (9) with equations (10) to
(12) reveals an analogy between the effects of a displacement
v of joint 1 and the raising of the voltage of binding post 1
by an amount V. The current caused by the change in
potential corresponds to the force caused by the displace-
ment, provided that the conductance of each conductor is
made cqual to the influence coefficient in the eorresponding

force equation. Hence
EA @bt
On="4 —50 (13)
Gbt
091"'——' H (1 4)
Gbt
Cor=75 - (15)

In the relaxation procedure the equilibrium state is
approached by displacing individually the joints and "sum-
ming the effects of each displacement. In exactly the same
way the actual distribution of the currents in the network
can be determined by changing individually the voltages of
each binding post and summing the effects of these changes.
In the reinforced panel equilibrium is obtained when at each
joint the sum of the external forces and of all the internal
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forces caused by the displacements is zero. The forces are
considered positive if they are directed as the positive dis-
placements. In the form of an equation,

ZF=0

An analogous equation in the direct-current network is
furnished by Kirchhoff’s first law, according to which the
sum of the currents flowing into any binding post must be
Currents in the direction of any binding post are
In the form of an equation,

ZI=0

Comparison of the last two equations reveals that the
conditions of equilibrium for the reinforced panel and Kirch-
hoff’s first law in the case of the direct-current network
complete the analogy of the two systems considered. It is
possible therefore to construct an electric network with the
same configuration of binding posts as that of the joints of
the reinforced panel. The conductances of the conductors
connecting the binding posts must be so chosen as to make
them proportional to the corresponding influence coefficients
in the operations table of the reinforced panel. If then cur-
rents are introduced at the binding posts which correspond
to the joints at which external loads are applied, the distri-
bution of the currents in the network will be the same as the
distribution of the forces between the various structural
elements of the reinforced panel.

In the first applications of the relaxation process to rein-
forced panels each joint was displaced until equilibrium was
established. It was noted in the section dealing with the
solution of the problem by matrix methods that this pro-
cedure permitted rigid body displacements of the structure.
Rigid body displacements can be eliminated if one or more
joints are considered as rigidly fixed. In the case of the
reinforced panel of figure 4 the degree of freedom of motion
of each joint is one, because the problem is considered as a
one-dimensional shear lag problem. Consequently it suffices
to fix one single joint so that it is prevented from displacing
vertically. However, if joint C, for instance, is fixed, the
symmetry of the structure and loading requires the simul-
taneous fixation of joint D.

In the analogous network binding posts C and D are given
predetermined values of the potentials by connecting them
to the ground. It is customary to attribute the value zero
to the potential of the ground. Consequently Vi and V),
are zero just as in the reinforced panel v¢ and vy are zero.

It will be noticed that in figure 4 the direction of F at
joints A and B is upward, whereas the direction of I at bind-
ing posts A and B in figure 5 is downward. This corresponds
to the difference in the sign convention in the two systems.
In the panel upward forces were considered positive and in
the network currents flowing toward the binding posts were
given the positive sign. The directions of the forces and the
currents at points C and D are the same. This again corre-
sponds to the correct signs required by the sign convention
since the downward forces at these points are negative just
as the currents which flow away from the binding posts are
negative. Hence the reinforced panel is under the action of
external tensile forces, whereas through the network currents
are flowing in the downward direction.

(16)

Zero.
considered as positive.

(17)

REPORT 934—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

In the case under discussion it is easy enough to introduce
the two equal currents at posts A and B and to regulate
their magnitude by means of an adjustable rheostat. How-
ever, when there are a number of impressed currents of differ-
ent magnitude stipulated, their adjustment may become a
lengthy trial-and-error procedure. In such cases it is ad-
vantageous to employ a number of commercially available
electronic devices, known as constant-current generators,
which have the property of maintaining a constant current
independently of the properties of the network.

When the construction of the network is completed and
the required external currents are introduced, the deflection of
any joint of the reinforced panel can be obtained by measur-
ing the potential of the corresponding post in the network
with respect to the ground. This quantity multiplied by the
conversion factor is the relative displacement of the corre-
sponding joint of the reinforced panel with respect to the
fixed points C and B. In most cases, however, the displace-
ment quantities are of interest only indirectly and the main
quantities sought are the forces in the stringers and the shear
stresses in the sheet. These quantities can be obtained in a
simple manner by multiplying potential differences by the
appropriate conductances and by the conversion factor.

For instance when the foree in stringer segment 1-8 is
sought, the voltage drop between posts 1 and 8 must be
measured and multiplied by the conductance (5 and the
conversion factor. This is a consequence of equations (7)
and (10). Similarly when the shear stress in panel 1689 is
required, the voltage drops in conductors 1-6 and 8-9 have
to be measured. From figure 4 the average displacement of
stringer segment 6-9 is (v447)/2 and the average displace-
ment of stringer segment 1-8 is (v, +25)/2. The difference of
these two average displacements multiplied by Gtb/a is the
shear force transmitted from the panel to stringer segment
6-9. Consequently the sum of the displacement differences
vg—v, and ry—ug multiplied by the influence coefficient 1-6
is the shear force sought. In other words the sum of the
voltage drops from post 1 to post 6 and from post 8 to post 9
multiphied by the conductance (' and the conversion factor
is the shear force in question. This shear force divided by
the length b gives the average shear flow in panel 1689 and
this shear flow divided by the thickness of the sheet is the
average shear stress.

With the cooperation of the Department of Electrical
Engineering a network was constructed at the Polytechnic
Institute of Brooklyn which was the analogue of the rein-
forced panel investigated earlier at PIBAL both experiment-
ally and by relaxation methods. The results of these
investigations are described in reference 3. The constant
currents were introduced by means of constant-current
generators. In the electrical system the unit of the potential
was chosen as 1 volt and that of the current as 100 milli-
amperes. Then the unit of the conductance had to be a
millimho and that of the resistance, a kilohm. In the
mechanical system the unit displacement was 10~* inch and -
the unit force, 1 pound. Consequently in this problem the
voltage differences had to be multiplied by the conversion
factor 107* inch per volt in order to obtain displacements.
The factor converting currents into forces was 10 pounds per
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ampere. The results of the measurements were in excellent
agreement with the results quoted in reference 3.

Similar experiments were carried out by Newton and Engle
at the Curtiss-Wright Corporation, Airplane Division, in
St. Louis and are described in two reports listed as references

11 annd 19
11 8iiG 14,

N avgrian o amrena o .

INEWLOIL'S appr oach to the pr oblem is fundamen-
tally the same as the argument given herein. However, his
electric network is slightly simpler since it does not contain
the conductors arranged diagonally in the system shown in
figure 5. The network of figure 5 was chosen in this report
in preference to Newton’s simpler network since by this
presentation the identity of the conductances of the network
and the influence coeflicients used in the other part of this
report could be established.

It should be mentioned that in many cases it is possible
to construct a dual type of network in which the currents
correspond to the displacements of the joints of the rein-
forced panel and the potential differences correspond to the
forces in the stringers and in the sheet covering of the
panels. In this type of network the external loads can be
introduced more casily as impressed potential differences.
However, the network described herein is more advantageous
since it can always be constructed directly from the geometry
of the reinforced panel.

The usefulness of the analogue with the direct-current
network breaks down when the influence coefficient in equa-
tion (7) becomes negative. In such a case the conductance
and consequently the resistance of the corresponding branch
of the network should be negative; this is obviously impos-
sible. However, the situation can be usually remedied in
the case of one-dimensional shear lag problems. The funda-
mental assumptions of the problem are not changed if a
number of additional horizontal bracing elements are intro-
duced in the panel since all of them are assumed to be
mfinitely rigid. If, however, the panel length b is reduced
to onc-half its original value, then the negative term in the
influence coefficient appearing in equation (7) is halved and
the positive term is doubled. In most cases this will suffice
to change the sign of the influence coefficient. When such
is not the case distance & can be reduced in any other suita-
ble ratio.

Negative influence coefficients can be realized if the anal-
ogous network is fed by an alternating current. The
quantity corresponding in an alternating-current circuit to
the resistance of the direct-current circuit is the impedance.
In the impedance the inductance retards the phase of the
current and the capacitance advances it so that the two
have opposite effects. If one is designated as positive, the
other is negative. However, no inductance is entirely free
of resistance and for this reason the accuracy of a compli-
cated alternating-current network may not be sufficient for
the solution of some of the problems encountered in practice.

The use of the electric analogue for solution of shear lag
problems is recommended when several similar panels with
many loading conditions are to be analyzed. For such a
case the construction of the analogous network, the varia-
tion of the loading by varying the impressed currents, and
the determination of the potentials at the binding posts
would be simpler than any analytic method of solution.

FUSELAGE RINGS

INTRODUCTION

In reference 5 numerical procedures for the determination
of the bending-moment distribution in fuselage rings are
developed and demonstrated on several simple and internally
braced fuselage rlngs The number of redundant internal
bracing elements increases little the work involved in estab-
lishing the operations table for the ring and affects not at all
the amount of numerical work in the solution of the opera-
tions table. This nonsensitivity to the number of redund-
ances constitutes the advantage of this method in the analy-
sis of fuselage rings.

The methods suggested for the solution of the system of
equations represented by the operations table and the
external forces are three: Relaxation, matrix-calculus, and
growing-unit. The latter two may be considered as direct
mathematical methods and as in reinforced-panel problems
require only computing personnel. For the analysis of
isolated fuselage rings of complex shape the use of these
direct methods is recommended since an accurate solution
is assured in a reasonable length of time, whereas the relaxa-
tion method may not lead to sufficiently accurate results
even after considerable effort has been expended. However,
for simply shaped rings and for problems of stress distribu-
tion in sheet, stringer, and ring combinations, application of
the relaxation method to fusclage rings is advantageous.
For this reason the relaxation method for fuselage-ring
problems is presented and new, more rapidly convergent
procedures are developed.

It has not been found possible to make concrete recom-
mendations for relaxation procedures which are rapidly con-
vergent for all types of ring and loading. However, satis-
factory procedures for several distinct types of ring and
loading are demonstrated and explained in some detail. It
is felt that consideration of these examples will suggest to the
analyst means of solving more rapidly other ring and eylinder
problems which are not efficiently attacked by direct mathe-
matical means. The procedures, which involve essentially
appropriate combined operations, are demonstrated on two
rings solved in reference 5 by the usual relaxation methods
and on a new internally braced ring. Application of the
growing-unit and matrix-calculus methods to the latter
problem is made to demonstrate these methods and to
verify the results of the relaxation procedure.

TORSION OF A CIRCULAR RING

In reference 5 the bending-moment distribution for a
simple circular ring with antisymmetric loading consisting
of concentrated forces and distributed and constant shear
flow is determined by application of numerical methods.
The dimensions and loading for this ring are shown in figure
6 and the operations table is given as table 7. Relaxation
methods are applied to the solution of this ring problem in
reference 5. By a process of increasing all the residuals in
such a proportion that one key operation would liquidate
them all to within the desired degree of accuracy, the resid-
uals were reduced to within 2 percent of the maximum
applied load in 12 operations.
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Fiecure 6 —Circular ring with antisymmetric loads.

In the present report combined operations which increase
the rate of convergence are demonstrated. Tangential and
angular displacements of A and C balance these points in
four operations and place all remaining residuals at B.
Since no tangential forces exist at A and C, the force residual
at B must be vertical and the moment residual, equal to the
couple of the vertical forces. Suppose the residual moment
at B is liquidated by a rotation of that joint while the balance
of A and C is preserved by suitable displacements of A and C.
Then from equilibrium considerations the residual forces at
B must also be liquidated. Thus in five operations balance
will be obtained. This procedure is used and proves to be
satisfactory.

In order to balance the residuals at A two combined
operations are developed. The first combines a unit angular
displacement w, with a tangential displacement u4 such that
no tangential force at A results when the two individual
operations are simultancously applied. The forces and
moments introduced by the individual operations as well as
by the combination are given in the following table:

N Forces and | |
™~ moments ’
\\ N T, N Ry Tw |Nc|Te
|
Operation ~ {
™~
wa=10"3 radian_ .. _.____. 1 —281.95 ‘—49.079 —20.966 |~4.733 | 64675 ' 0| 0
wa=—0.93848X 103 in_._.|  46.060 | 49.070 [~60.696 | 21.060 |—48.347 | 0| 0
"2 Operation A=1..__. l —BAS |0 |=90.662 | 16.327 1 16.328 | 0 ‘_o_

The second operation combines a unit tangential displace-
ment u, with an angular rotation w, such that at A no
moment arises from the combined operation. The forces
and moments introduced by the individual operations as
well as by the combined operation are given in the following
table:

\ Forces and
~ moments

Ny Ta Ng Rg Tp
Operation \\
wa=10-31in. .. .. ...| —49.079 | —52.296 64, 675 —22. 441 51.516
wa=—0.17407 X102 -
radian_ ... ... 49.079 8.5432  5,2162 0. 82387|—11. 258
=—->Operation B=1 . 0 —43. 753 69. 891 —21.617 40. 258

Thus by using the nccessary amounts of the combined
operations A and B joint A is balanced in two operations.
Two similar operations are found for joint C and are given
as follows without explanation:

\\ Forces and
~ moments
~ Na| Ta Ng Rg Tgs Ne Te
Operation \\
we=103radian___....| 0 | o | 56.512 | 8.842 | 6.632 |—157.899 |—1.563
ue=—4.8540X10% in.| 0 | 0 |—32.192 |-2.5435 |—0.33250 7.5868 | 1,563
> >Operation C=1...| 0 | 0 | 24.320 | 6.2085 | 6.2005 |—-150.31 | 0
\\ Forces and
\moments
Ny| Ta Ng R3 g’ Ne¢ Te
Operation \
ue=10"3in....__._. ] 0| o] sz | o2 0.0685 | —1.563 |—0.322
w00=—0.0098987 X 107 | .
radian.____._____.. 0| 0|—0.55039 [—0.08752 | —0.0656 | 1.563 | 0.01547
E-Operation D=1.. | 0 | 0| 60726 ‘ 0.43648 | 0.0020 | 0 —0.30653

In order to balance the residuals at B without disturbing the
balance at A and C obtained by use of operations A to D,
combined operations involving tangential and angular
displacements of A and C and a unit rotation of B are devel-
oped. If joint A is to remain in balance when a rotation
of B is undertaken, joint A must be rotated and displaced
in such a manner that the tangential force and the moment
introduced at A by this rotation of B are equilibrated. Since
the angular displacement introduces tangential forces at
A and the tangential displacement introduces moments, two
simultaneous equations must be solved for the unknown
tangential and angular displacements. The equations for
A are:

—281.95w,—49.079%,—29.966 X 1073=0] (18)
—49.079w,—52.296u,+64.675X107*=0]

The solution to these equations is w,=—0.38434 <1073
radian and u,=1.5974107% inch. A unit rotation of B
and tangential and angular displacements of C are combined
in equations (19) so that the tangential force and moment
introduced at C by the combined operations are zero.

—157.899?1)0—1.563uc—l—56.5117><10’3:0} (19)
—1.563we—0.322uc+6.632 X 1073=0

The solution to these equations is we=0.16180<107? radian
and uc=19.811X107% inch.

If the forces and moments introduced by the three sets of
displacements (unit rotation of B, the tangential and angular
displacements of A, and the tangential and angular displace-
ments of C) are combined, & combined operation is obtained
such that only forces and moments at B and radial forces
at A and C are introduced. These latter forces are of no
interest in the relaxation procedure since they are equi-
librated automatically by the other half of the ring. The
combined operation from these three sets of displacements is
given in the following table:
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\\ Forces and
~ moments
\ Na Ta Ng Rp Tn N¢ Tec
~_

Operation \\
wp=10"3radian. .. ____.___.._..._ —20. 966 64.675 —439, 849 31.443 —50, 642 56. 5117 6.632
w4=—0.3843 X103 radian__._.____. 108.37 18, 863 11. 517 18151 —24. 857 0 0
wa=1.5974X10-3in______________. —78.399 | —83.538 103.31 —35. 847 §2.292 0 0
we=0.16180X103 radian_________ 0 0 9. 1436 1. 4306 1.0730 | —25. 548 ~0. 25289
we=19.811X10-3in.. .__.___.____. 0 0 131.39 10.381 1.3570 | —30.964 —6.3791
Z—»Operation E=1_.___.____.___.. 1] 4] —184. 49 9. 2267 9. 2230 0 0

The relaxation table using these five combined operations,
A to E, is given as table 8. The balancing process was
carried out on a slide rule and after five operations all the
residuals were reduced to negligible quantities. From the
magnitudes of these group operations the total individual
displacements of A, B, and C can be found and the unknown
radial forces at A and C calculated.

The procedure just described involves essentially the
development of group operations so that full advantage of
the symmetry properties of the ring may be realized. This
method is applicable to other rings. The internally braced
circular ring subjected to antisymmetric loads and analyzed
in reference 5 can be treated in the same way as this simple
ring. If these rings had been symmetrically loaded, the
force residuals at B, after A and C had been balanced by
simple radial displacements, would have a horizontal
resultant. By combining radial and tangential displace-
ments of A and C such that the resultant force introduced at
B is horizontal and such that A and C remain in balance, the
horizontal resultant at B could be liquidated by application
of such a combined operation. The moment residual at B
is not neccessarily climinated when the foree residual at B is
balanced. Joint B must be rotated while A and C are dis-
placed radially so that the moment at B is liquidated and
joints A and C are kept in balance. If the process of liqui-
dating first the residual force and then the moment at B,
prescrving in cach operation the balance at A and C, is not
rapidly convergent, two equations for the equilibrium of B
can be established and solved for the required amounts of the
combined operations.

Thus the foregoing procedures for both the symmetrical
and antisymmetrical loading can be applied to any ring
singly symmetrical with only one joint between the center
line of symmetry joints. It may, therefore, be advantageous
in some ring problems to combine several bars, as in the
method of the growing unit, such that only one joint be-
tween the boundary joints has independent degrees of
freedom. This will permit use of the foregoing procedure.

Suflicient accuracy for most engineering purposes can be
obtained in the computations of this procedure by the use of
a slide rule throughout. Although the combined operations
shown herein were obtained by the use of a computing
machine carrying five significant figures, the procedure was

first demonstrated with the use of a slide rule for all calcula-
tions. The results of the two sets of calculations are In
good agreement, thus indicating the sufficiency of slide-rule

accuracy.
EGG-SHAPED RING

Figure 7 shows the dimensions of, and loading on, a ring
which is analyzed in reference 5. The operations table for
this ring is given as table 9. In this ring there are two
points B and C between the center line of symmetry points
A and D. By making the degrees of freedom of either
point B or C dependent on the other and on the adjacent
center line of the symmetry point, one point with independent
degrees of freedom is established between A and D and the
method discussed previously can be used.
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FiGurE 7.—Egg-shaped ring with symmetric loads.
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However, in order to demonstrate the simplicity and
effectiveness of group operations, another approach is used.
The center lines of symmetry points A and D are balanced by
simple radial displacements of A and B. The midpoint of
bar BC is assumed restrained tangentially so that only equal
and opposite tangential displacements of B and C are under-
taken. Because of the large extensional stiffness of bar BC
as compared with the bending rigidity of the circular seg-
ments and because the ring is almost symmetrical about a
horizontal axis, such displacements of B and C liquidate ap-
proximately equal and opposite tangential residual forces at
B and C, such as those which will be obtained at these points
when the residuals associated with the other degrees of free-
dom are small.

If the balance at A and D is preserved by appropriate com-
binations of the radial displacements of A and D with the
required displacements of B and C and if the tangential resid-
uals at B and C are not considered until the foregoing opera-
tion will liquidate them both, main attention is focused on
the radial force and moment residuals at Band C. Inorder
to balance these, no specific method of convergence is used
but the state of the residuals after each step is considered
before the next operation is selected. In this problem of
egg-shaped rings and many other rings and in the complete
cylinder problems this approach, utilizing physical proper-
ties of the system and eliminating or reducing extraneous
forces and moments at each step in the relaxation process,
may be the most satisfactory method of solution.

Table 10 is the relaxation table for the ring in question.
The first two operations involve only radial displacements
which balance the 500-pound forces at Aand D. The largest
residual then is the radial force of 451 pounds at C. If point
C is displaced radially so as to balance this residual, a large
moment and a large radial force are introduced at B. In
order to reduce these extraneous forces and moments and
to keep joints A and D balanced, radial displacements of A,
B, and D and a rotation of B are combined as shown by the
following operations:

—3.348330,+8.92216wp—2.69614v5=
8.922160,—327.866wz+11.469705+8.10267 X 107*=0

The solution of this system of equations is: v4=—0.26384 X
10~*inch, wp==0.03279>107* radian, vx=0.43618 X 10~* inch,
and vp=—0.9024X10"* inch.

The forces and moments introduced by each of the individual
operations and by the combination are given in the following
table:

~ Forces and
\ moments
\\ Rp Ng Rgp Ts
\\
Operation \
ve=10~4in__ .. ____ .. ... 0 8. 10267 0. 66158 0
94=-0.26384X10~%in . ... ._. 0. 88343 —2.3540 a 0.71136 | —1.0468
wp=0.03279X10~* radian. . ... __. 0.29258 —10. 751 0.37612 | —0.42963
vp=0.43618%X10~4in. .__._._._ . _._. —1.1760 5.0028 —1. 7491 1. 4984
op=-0.90242X10~%in..._____..___ ] - 0 0 0
Z—Operation F=1__._________._. 0 0 0 0.0219
\ Forces and
moments
\\ Ne Re Te Rp
\\
Operation \\
pe=10"4in ______ . ... .. —2.95622 —1.902C5 —0.88929 | —1.1190
24=——0.26384 X104 in...__.... ... 0 0 0 1]
wp=0.03279X10~4 radian..__..___. —2.0082 0. 26570 0 0
vp=0.43618X10~4in . ____..._..___. —3.5342 0. 28857 0 0
vp=—0.90242X10¢~ in_.._.._..___. 6. 6350 1. 00981 0. 93626 1.1190
=—>Operation F=1________._..___. —1.8636 —0.33798 0.04697 0

The use of combined operation F is desirable in balancing the
radial residual force at C, since 1t also reduces the moment
residual at C and adjusts the tangential residuals at B and C
in the desired manner.

The residual considered after use of operation F is Rp=
402 pounds. In order to balance it by a displacement
vy while the balance at A is preserved, & v,-displacement
must be undertaken as well. If »=10"* inch, then

v 2.69614 —0.80522% 10™* inch. The forces and

20) | Y47 334833 10*
—2. 14v . —4. . —t— ( N Coae . .
696147,44-11.469715—4.00991257-0.66158 X 10 0 moments introduced by these individual operations as
—12.240025,—1.11900X107*=0 well as by the combinations are given in the following table:
~~ Forces
~
~
\\ Ry N5 Ra Tg N¢ Rc Tc Rp
Operation \\
vp=10~*in . ._..__.. .. _._.. —2.€9514 11. 4597 —4, 00991 3.4352 —8.10267 0. 66158 0 0
v4=—0.80522X10~4in ..._.__ 2, 6961 —7.1843 2.1710 —3.1949 0 0 0 0
Z->Operation G=1._________. 0 4. 2854 —1.83891 0. 2403 —8, 10267 0. 66158 0 0 \

Consider the effect of eliminating the Rz-residual by use of
operation G. The moment residual Nz would also be re-
duced by roughly 1000 inch-pounds, the Tz-residual would
be brought in closer agreement with the 7e-residual, an

Rcresidual of about 30 percent of the previous Ee-residual
of 451 pounds would be introduced, and a large Nc-residual
would be introduced. The last two effects are undesirable.
However, by use of operation F again, the Rc-residual can be
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balanced without introducing a new Rp-residual.
Ne-residual is not so easily balanced unless a new combina-
tion involving joints A, B, and D is evolved.

Suppose, therefore, that a rotation of C and a radial dis-

The large

placement of D are combined so that a moment at C can be
eliminated and so that the balance of D is preserved by use
of the combination. The individual operations and the
combinations are given in the following table:

Forces and
moments
Ry Np Rp Ta Ne Re Te Rp
Operation ~.
we=10~4radian___________________ 0 —61. 242 —8.10267 0 —288. 367 —2.95622 —5. 24667 —7.3524
up=—5.9294X104in__.__________ 0 0 0 1] 43. 595 6. 63500 6.1517 7.352¢
Z-Operation H=1_______________ 0 —61, 242 —8.1027 0 —244, 772 3.6788 0. 90508 0

If operations G and H are combined so that the moment at C introduced by the combination is

forces and moments are given in the following table:

zero, the resulting

\\ Forces and
~— moments
\ Ra Ng Rp Ts N¢ Rc¢ Te Rp
Operation \\
IX(G). ol 0 4. 2854 —1. 83891 0.2403 —8.10267 0. 66158 0 0
—0.033103X(H) ... ... 0 2.0273 0. 26822 0 8.10267 —0.12178 —0. 02996 0
Z->Operation I=1 .__.___________ 0 6.3127 —1.5707 0.2403 0 0. 53980 —0. 02996 0

Use of operation | results in liquidation of the Rp-residual,
in reduction in the Np-residual, in adjustment of the 7T's-
and T¢-residuals toward the desired equality, and in intro-
duction of an Rc-residual of 138 pounds. The latter can
be balanced by the use of operation F, which will preserve
the balance of A and D and will not affect the Ngz- and
Ry-residuals.

After this fifth operation the T- and Ts-residuals are
approximately equal and opposite as desired. Therefore, a
group operation, involving equal and opposite tangential
displacements of B and C and sufficient radial displacements
of A and D so that the latter remain balanced, is developed
in the following table:

™~ Forces and - -
~ moments
\ Ra Na Rs T
Operation \
up=10~4in.____._______________.. 3.96771 —13. 1014 3.4352 —30. 9566
we=-—10"4in________.___.__________ 0 0 0 —26. 2058
04=11850X10~4in__________.._.__ —3.9677 10. 573 —3.1949 4. 7017
2p=0.83669X10~*in.______________ (] 0 0 0
=->Operation J=1_______________ 0 —2, 5284 0.2403 —52.461
Forces and
moments
N¢ Re¢ Tc Rp
Operation ~.
up=10~*in__.___.__.____._.__._.. 0 o 26. 2058 0
we=—10"4in__.____._.______._.__ 5. 24667 0. 88929 27.0833 1.0375
p4=11850X10~4in.______.__..____ 0 0 0 0
pp=0.83669X10~*in_______________ -—6.1517 —0. 93626 —0.86807 | —1.0375
Z—-OperationJ=1.__.___________ ~—0.9050 0.04697 52. 421 0

Use of operation J liquidates the T5- and Tg-residuals and
affects little the balance in the other degrees of freedom.
The remaining residuals are considered negligibly small, the
moment of 309 inch-pounds being approximately 3 percent
of the maximum moment in the ring. As in the previous
problem the individual displacements can be determined
from the magnitudes of the group operations and thus the
unknown moments and tangential forces at A and D cal-
culated.

Although the calculations of the group operations shown
herein have been carried out on a computing machine with
five significant figures maintained wherever possible, suffi-
cient accuracy for engineering purposes can be obtained by
the use of a slide rule. In developing this procedure a slide
rule was used for all computations and the results agreed
satisfactorily with those shown herein.

OVAL-SHAPED RING WITH INTERNAL BRACING

The ring shown in figure 8 is used as a third example of
the new relaxation procedures. As a check on the results
of this procedure the system of equations given by the
operations table and external forces is also solved by the
exact mathematical methods of matrix calculus and of the
growing-unit method. In order that the charts and tables
of reference 6 could be used in determining the influence
coefficients, the following physical characteristics of the
elements of the ring are assumed:

Segments AB and EF:

AlL?
'y—T—500
*
F=—0-=0.10
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B=45°
EI=10°lb-in.?

L=18.85 in.
Segments BC, CD, and DE:
AlL?
")/-——T =500
A*
E——A——O.IO
8=30°
EI=10°% Ib-in.?
L=18.85 in.
Segment EG:
AL?
y= »If~—400
A
E= o =0.10
B=0°
1”4’1’—: 105 lb'in.

1000 /6 C /000 /6
—p ———

/000 /b 1000 /b
-— ——————>

D

N
R
F
FrrURE 8.—Oval-shaped ring with positive direetions of forces and moments shown.

Because of the symmetry about a line through AGF only
one-half of the ring need be considered. Joints A, G, and F
are then restrained from rotating or displacing tangentially
and cannot be subjected to radial forces. The assumed
positive directions of the displacements and of the forces

and moments at each joint are shown in figure 8. From
the foregoing assumptions, the influence coefficients and the
operations table given in table 11 are determined.

The horizontal external forces of 1000 pounds at C and D
are resolved into their tangential and radial components.
Thus the external forces are:

R;=965.93 Ib 1

Rp——965.93 1b (21)

Tph=—258.82 1b

The matrix-calculus solution of the system of equations
given by these external forces and by the operations table
is first obtained so that the equilibrium of the ring as given
by this solution will provide a check on the whole setup.
Joint G is considered fixed so that a unique solution to this
system of equations is obtained; thus there are 14 degrees
of freedom to be considered. The 14 unknowns are found
by the method of reference 9 to be:

ra=—0605.73 1072 in. 1
wp=40.825%X 10723 radian
15=235.144 1073 in.
up=—300.06<107* in.
We=—11.445% 1072 radian
1e=064.55X 1072 in.

ue=—72.282 10" in.
(22)

Y

Wwp=—22.975X 1073 radian
rp=—04.734<107% .
Up="10.130 X107 in.
wr="6.2337 X 107? radian
tp=—42.621X107% in.

up=32.513X107% in.

tp=—44.648X107% in. |

These displacements give the following values of the
unknown moments and tangential reactions at A, F, and G
on the bars rather than on the joints:

N,=-—3118.8 in.-Ib)
T4=402.51 1b
Nr=105.43 in.-1b
Tp=—182.57 1b T
Ng=—371.06 in.-1b
Rs=0.431b

5= 584.93 Ib J
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Figure 9 is the bending-moment diagram for the ring with
these reactions applied.

By examining the equilibrium of one-half the ring under
these reactions and the external forces, the accuracy of the
operations table is established. Since R, and Ry are zero,
the summation of forces in the vertical direction is simply:

F,=R;=0.431b (24)
The summation of forces in the horizontal direction is:

EFHZ TA'—‘TF—TGZO].O lb (25)

The summation of moments about point G is:

0. 70711

No+Np+4Tw(24)(1—0.70711) — 1000(2 X 36 %X 0.25882)
=—3118.914+402.49(57.941)—371.06+105.43 —
182.56(7.0294) — 18,635.04
=17.45 in.-lb (26)

The equilibrium conditions for the half ring are approxi-
mately satisfied, the maximum percent error being a moment
of less than 0.1 percent of the applied couple of 18,635 inch-
pounds. It is considered that the accuracy of the operations
table is established by this equilibrium check.

Approximately 20 man-hours by an unskilled computing-
machine operator were required to solve this system of 14
equations. It is estimated that a skilled operator familiar
with the Crout method would require about 10 man-hours.

In applying the Crout method to this problem the co-
efficients of the linear cquations arc assumed to be mathe-
matically exaet and, therefore, as many figures as could be
carried on the 10-bank computing machine are used through-
out the computation. In this way an accurate solution is
obtained and the additional computing work is not great.
Afterward the values of the unknowns can be rounded off to
the physically correct number of significant figures.

Use of the growing-unit method of solution on this ring is
demonstrated as follows. This method is described in detail
on pages 39 to 46 of reference 5. It is demonstrated on this
new ring as an application of the procedure to a ring with
many intermediate joints between the center line of sym-
metry points. In applying the growing-unit method to this
ring the units are combined into bars of increasing length
until displacements of all points are known such that the
only unbalanced forces remaining act in the radial direction
at A and F when unit radial displacements are undertaken at
A and F. Then thesc forces at A and F can be eliminated
by appropriate radial displacements of A and F and the final
distorted shape determined.

The first units to be combined are AB and BC. In order
to effect this combination, the displacements of B required
to maintain the balance of B during a unit radial displace-
ment of A and unit radial, tangential, and rotational dis-
placements of C must be determined. The displacements of

B required to maintain the balance of B while point A is
displaced radially 1072 inch are given by the equations:

Np=—454 34wz +6.723805— )
78.411u5+5.9020X 10-3=0

=6.7238wz—12.093v5+

0.55690u;,—4.57781073=0 i 20

p=—"78.411wz+0.556900,—
84.510uz+14.662X1072=0 J

The solution to these equations is: wz=—0.026434X10"?
radian, vp=—0.38424X107% inch, and wuz=0.19549X10"%
inch.

If the forces and moments at points A and C due to a
displacement v,=10"% inch and due to the foregoing dis~
placements wg, vz, and up are summed, the following equa-
tions are obtained:

R,=-—2.66181b

N¢=10.699 in.-lb
(28)
Re=—1.8871 1b

Te=3.26141b

The displacements Ny, Ry, and T are zero since that is the
condition satisfied by equations (27).

The displacements of B required to maintain balance at B
during unit rotational, radial, or tangential displacements
of C are determined in a similar manner and are collected in
table 12.

The forces and moments given in the last seven rows of
this table constitute the influence coefficients for a new unit
of the ring, namely, the segment ABC. This unit is not a
bar, the center line of which is an arc of a circle, but rather
one composed of two ares of circles. This combining of
units, extended until the entire ring is one segment, is the
main principle of the growing-unit method.

Each column of table 12 represents a group displacement
made up of individual displacements of points A, B, and C.
Let these group displacements be identified by the Roman
numeral given at the head of each column. For example,
group II is made up of the displacements w;,=10"2 radian,
wp=-—0.21631X10"% radian, »p=—0.23971X10"* inch,
4p=0.74197 X107 inch, and vs=v;=uc=0. The moment
at C, for instance, caused by the application of z;; units of
the group displacement II is then

Nc=—389.5627n (29)

With a similar notation for all other forces and group dis-
placements, equations (30) may be sct up representing the
requirements for equilibrium of joint C under the external
forces acting at that point, balance of B being maintained.

Ne=—389.5621—10.093x1,—53.77 12y =0
Re=—10.09325;—6.752925;;—10.6152:y+965.93=0 + (30)
o= —53.77 1y, — 10.615x5;— 54.199z, —258.82 =0



16 REPORT 934—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

The solution to this system is ¥;;=1.0476, z;;;=217.61, and
rrv=—48.436, and the following forces and moments are
introduced at A and D:

R,=—557.431b
Np=—2,666.6 in.-1b
R,=184.66 1b
T,=626.46 1b

(31)

The forces and moments at D are added to the external forces
applied to the ring at D and are balanced after the unit
problem for the segment at ABCD is established. The
R~ force is not balanced until the complete ring is one seg-
ment and until the Ry~ and Rz residuals can be balanced
together.

The next unit to be considered is the combination of the
ABC segment with bar CD into the segment ABCD. The
problem is to find the forces and moments at A, D, and E
due (1) to & unit radial displacement of A with joint D fixed
and (2) to unit radial, tangential, and rotational displace-
ments of D with A and E fixed. Joints B and C are free to
displace so as to maintain the balance at B and C in each
of these four cases. By determining the magnitudes of
211, Z1r1, and oy required to balance C in each of these four
cases, the required displacements of both B and C are im-
plicity determined and the unit problem for segment ABCD
is solved.

The magnitudes of the #;-, zi-, and z;y-operations re-
quired to balance joint C when A is displaced radially 1073
inch and B permitted to displace so as to remain in balance
are given by the following equations:

c= —389561‘11—100931111—53771.'I'Iv+ 10.699=0
o= — 10.093111_6.75291'111_ 10.615.1'1V_‘ 1.8871=0 (32)
Te=—53.771ry—10.615r1;—54.19921v+3.2615=0

The forces and moments at C to be balanced are given in
group I in table 12. The solution to these equations is
211=0.021497, ;= —0.53843, and xy=0.14430. Use of
these multiples of operations II, III, and IV and of a unit
amount of group I results in the following forces and moments
at A and D:

R,=—0.945051b

N,=6.7928 in.-lb
(33)
R,=—0.74924 1b

T'p=0.77749 1b

The forces and moments given by groups V, VI, VII, and
VIII in table 13 are the influence cocfficients for segment
ABCD. For example, the forces and moments introduced
at A, D, and E due to a unit radial displacement of D with
A and E fixed and with B and C in balance are given by VII.
With these sets of coefficients it is possible to balance joint
D while the balance of B and C is preserved. The forcoes

and moments to be balanced at D are (1) the external forces
on the ring at D and (2) the forces and moments which are
introduced at D by the balancing of C and which are given
by equations (31). The residuals to be balanced at D are
thus: ’

LVD=_26666 in.-lb
R,=-—965.934184.66=—781.27 b (34)
T'p=—258.82-+626.46=367.64 1b

The equations which condition the balancing of joint D,
from consideration of groups VI, VII, and VIII, are seen
to be:

ATD: —346.88IVI"“16.697J'Vu—43.745.1'v111_2666.6=O
R,=—16.697xry;—5.6500xviy—12.4582xy;;;—781.27=0 (35)
TD: —4:3.74:517v1—‘ 124581v11—50817.tv111+36764:0

The solution to these equations 1s avi=—3.3100,
Tyn=—328.09, and zvi=90.518, which give the following
forces and moments:

R,=203.711b

Nz=4889.4 in.-]b
(36)
Rp=—522.69 b

Tp=—149.69 1b

As in the balancing of C, a tangential force and moment are
introduced at A by this balancing of D, but because of
symmetry the equilibrium of A is not disturbed by these.
The R -forces will be balanced later and the residuals at E
will be balanced when the influence cocfficients for segment
ABCDE have been determined.

In order to find the influence coefficients for bar ABCDE,
the forces and moments at A and E due to a radial displace-
ment of A with E fixed and at A, E, and F due to unit radial,
tangential, and rotational displacements of E with A and F
fixed must be determined. By determining the magnitudes
of groups VI, VII, and VIII required to balance D in each
of these four cases, the required displacements of B, C, and
D and the required forces and moments are determined.

The magnitudes of the groups VI, VI1I, and VIII required
to balance D when joint A is moved radially 107% inch are
given by the following equations:

ND: —34688.IVI_ 166971‘VI1_4:37451‘v111+67928:o
Rp=—16.6971y1—5.65002y1;—12.4582v1—0.74924 =0 » (37)
TD: —43-7451‘VI_ 124581‘v11—50817xv111+077749:0

The forces and moments at D to be balanced by groups VI,
VII, and VIIT are given by V in table 13 and are the constant
terms in equation (37). The solution of these equations is
7v1=0.028042, Zyun=—0.42660, and xy;=0.095744. The
summation of forces and moments due to a unit magnitude
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of group V and the foregoing multiples of groups VI, VII,
and VIII are:

R,=—0.36050 b

Nz=4.1055 in.-Ib
(38)
Rz=—0.31703 Ib

Tx=0.19226 1b

In a similar manner the complete set of influence coeffi-
cients for segment ABCDE is determined and is given in
table 14. For example, the forces and moments in group XI
are the forces and moments introduced at A, E, F, and G by
a unit radial displacement of E with A, F, and G fixed and
with points B, C, and D free to displace so as to remain in
equilibrium. With these influence coeflicients joint E can
be balanced while the balance of B, C, and D is preserved.

The forces and moments to be balanced at joint E are
those introduced by the balancing of joint D with groups VI,
VII, and VIII and are given by equation (36).

The equations in xx, rxy, and xxy balancing joint E under
these loads are:

ATE: ’—533.92.1'};—38.0991'}(1—29579.1‘}(1["‘48894::0

The solution to these equations is xx=11.184, rx;=—51.518,
and zx1;=29.771 and the forces at A, F, and G introduced by
this balancing of E are:

R,=67.974 1b
Ry=—266.68 1b (40)
Rs=70.6681b

The tangential forces and the moments introduced at A, F,
and G are not considered in this balancing of the half ring,
since these are equilibrated by the forces and moments from
the other half of the ring.

The final combination of units will be the combination of
bar EF with the unit ABCDE. When this union is effected,
the influence coeflicients for the half ring as a unit will have
been determined and the radial forces at A and F can be
balanced simultaneously. The radial forces at joints A and
F due to a unit radial displacement of A with F fixed and to a
unit radial displacement of F with A fixed must be deter-
mined. In both cases joints B, C, D, and E are displaced so
as to remain balanced.

The equations giving the magnitudes of groups X, XI, and
XII required to balance joints B, C, D, and E when joint A
is displaced radially as in group IX are:

Nz=—533.922x—38.099xx:—29.5792x;+4.1055=0
Ry=—38.0992xx —49.2952x; — 53.432xx;—0.31703 =0 41)
Tp=—29.5792x — 53.4322x1—76.322xx11+0.19226 =0

The solution to these equations is xx=0.0094398, xx;=
—0.051804, and zx;;=0.035128 and the forces introduced by
a unit magnitude of IX and by these multiples of groups
X, XTI, and XII are:

R,=—0.29857 1b
Ry=—0.33361 1b (42)
Rz=0.035176 1b

The equations giving the magnitudes of groups X, XI, and
XII required to balance joints B, C, D, and E when joint
F is displaced radially 107 inch are:

NE': _53392$x_380991}(1—29.57933}(11_5.902():0
Te=—29.579xx —53.432xx;— 76.3221x1;— 14.662=0

The solution to these equations is zx=—0.017182, xx;=
0.50354, and axp=—0.53797 and the forces introduced at
A F, and G by a radial displacement of F of 1073 inch and
by the foregoing multiples of groups X, XI, and XII are:

R,=—0.333611lb
Rp=—1.44701b (44)
Ry=1.1156 b

The forces given by equations (42) and (44) represent the
influence coeflicients for the entire half ring and are labeled
groups XIII and XIV, respectively. These forces permit
calculation of the multiples of groups XIII and XIV required
to balance the radial forces at A and F. These forces are the
total forces remaining from the balancing of C, D, and E;
R, is given by the sum of the R,-forces of equations (31),
(36), and (40) and is:

R,=—557.43+293.714+67.974=—195.751b

The Re-force is the force introduced by the balancing of
E alonc and is given by equation (40). It is:

Ry=—266.68 lb

The equations giving the magnitudes of groups XIIT and
X1V required to balance joints A and F under those loads are:

RA:_O29857]3}(111_0.333611'1(1\;—1957520} ( )
45
Rp=—0.33361xrx1;;— 1.447025xv—266.68=0

The solution to these equations is zxi=—605.73 and
Txv=—44.646. The radial force at G introduced by this
balancing is —71.114 pounds, but the Rgforce given by
equation (40) in the balancing of E is 70.668 pounds. The
difference between the two, —0.446 pound, is considered
negligibly small compared to the applied loads of 1000
pounds.

With the balancing of joints A and F and the substantia-
tion of the balance at G, the entire half ring is balanced.
The total deflections in each degree of freedom can now be
calculated and used to determine the unknown bending
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moments and tangential forces at A, F, and G. In order
to calculate these deflections the balancing equations (30},
(35), (39), and (45) give the magnitudes of the group opera-
tions involved while the equations determining the group
influence coefficients give the individual operations involved
in each group.

Table 15 gives the magnitude of all group displacements
from I to XIV implied in a unit application of any one group.
For example, row X in this table indicates that a unit
magnitude of group X (that is, zx=1) is equivalent to the
sum of the effects of Xymr=2.1885, Xyu=—4.6760,
Xy1=—0.16186, and wz=1073 radian, or the sum of the
effects of Xpy=2.9219, X;;=1.7552, Xy=—0.19736, wy=
1073 radian, wp,=—0.16186 X 107% radian, vp=—4.6760 X
10? inch, and u,=2.1885 X 107% inch. During the solu-
tion of the problem the magnitude of group X which was
explicitly used was 11.184, as given in the last column of
table 15.

From table 15 the total magnitudes of cach group opera-
tion may be found. TFor example, the total magnitude of

group VI is:
zvr=(1)(—3.3100) -+ (0.028042)(0)+ (—0.16186)(11.184) -
(0.037474) (—51.518) + (—0.0022427) (29.771) -+
(0.024494)(—605.73) -+ (0.022857) (—44.6406)
=—22.975 (46)

The total displacement w, is:

Wp=(xv1) X103 =—22.975X 1072 radian (46a)

Similarly the displacements of all points except point B
may be calculated from table 15 and are given in the last
row of that table.

Point B was displaced during the application of groups I,
II, III, and IV, and therefore the magnitude of its dis-
placement must be calculated as indicated in the following
example:

wp=(—0.026434 X107%)(—605.73) +
(—0.21631X107%)(—11.444)+
(0.035554>X1072)(664.55) 47
(0.017847 X 1073)(—72.286)

=40.825X1073 inch
where the first number in cach product is the magnitude of
wy involved in each unit application of groups I, II, III,
and IV, respectively.

The total displacements used are assembled in equations
(47a).

v,=—605.73X107% in. h
wp=40.825X10"% radian
2p=235.144X 1072 in.
up=—300.06 1072 in.
we=—11.444 1072 radian
20=664.55X1072 in.
Ue=—72.286 X102 In.
wp=—22.975X1072 radian
vp=—94.731X107% in.
wp=90.127 X107 in.
wr=16.2331X1072 radian
vp=—42.620X107% in.
Up=232.511X107% in.
vp=—44.646 1072 in. J

r (47a)

These total displacements constitute the unknowns of the
system of equations given by the operations table and the
external forces; comparison between this growing-unit and
the matrix-calculus solutions given by equations (47a) and
(22), respectively, indicates good agreement for the dis-
placements. In fact, the forces and moments given by the
two methods differ by less than 1 percent and thercfore arc
given only for the matrix method (cquation (23)).

Several general remarks are made about the growing-unit
method: '

(a) In determining the influence coefficients and in balanc-
ing the external forces and moments, sets of equations with
the same left-hand sides but with different constant terms
are used several times. This simplifies solution of the cqua-
tions and reduces the computational work considerably.

(b) In order to obtain sufficient accuracy of solution for
rings with many joints, calculating machines must be used;
five significant figures were carried throughout the calcula-
tions. However, on the simpler rings such as the circular
ring and the egg-shaped ring discussed previously, slide-rule
accuracy for determining the displacements in a combined
opceration is probably sufficient for engineering purposes.

(¢) A check on the influence coefficients for composite
bars is obtained by applying Maxwell’s theorem of reciprocal
deflections. This is a valuable device for assuring accuracy
at each stage.

In applying the new relaxation procedures to this ring, it
would have been possible to use the general method de-
scribed for the egg-shaped ring, that is, to consider the resi-
duals after cach operation and develop a satisfactory com-
bined operation to reduce as many residuals as possible.
However, the number of degrees of freedom involved in this
ring is large and, therefore, the number of residuals to be
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considered in testing the efficacy of a particular operation is
large.

The loading on the ring provides a clue to overcoming
this difficulty. No external loads are applied at A, B, E,
F, and G; moreover, A, F, and G are points along the center
line of symmetry. Therefore, if in balancing D and E the
balance at the other joints is preserved by suitable dis-
placements, attention is fixed on the two joints D and E
and the procedure described for the egg-shaped ring can be
used effectively. It will be recognized that this procedure
is essentially a combination of growing-unit and relaxation
methods of solution.

In executing the proposed method the bar ABCD, free
only to displace radially at A and fixed at D, is considered
first. The equations giving the displacements of A and B
required to maintain balance of these points while joint C
is rotated through 1072 radian are:

Ry=—7.13100,+5.9020w;—4.57780,+ )
14.662u5=0

Np=>5.90200, —454.34w,+6.7238r5;—
78.411up—38.489107%=0

\
Ry=—4.57780,+6.7238ws—12.093r5+
0.55690uz—1.8576 X1072=0

Ts=14.6620,—78.411wz+0.556900,—
84.510up+45.876 X1073=0 J

(48)

The solution to these equations is v,=4.0195X10"? inch,
wp=—0.32255X107% radian, vz=—1.7842< 1072 inch, and
up=1.5277>}107%* inch. These displacements combined with
the unit rotation of C yield:

Ne= —346.56 in.-1b )
Re=—17.678 b
Tp==—40.663 b
Np=—38.489 in.-1b r
Rp,=1.85761b
T,=45.876 1b

(49)

The moment and tangential force introduced at A are not
considered until the balancing of the ring is complete.

In a similar manner the forces and moments for unit radial
and tangential displacements of C are determined, as shown
in table 16. The forces and moments given by groups XV,

. XVI, and XVII constitute the influence coefficients for the
displacements of C with A and D fixed and with joints A and
B balanced. TUse of these coefficients permits focusing of
attention on C and D, the joints at which the external forces
are applied when C is being balanced.

The forces and moments introduced at C and D when D
is displaced a unit amount in each degree of freedom and
when E, F, and G are displaced so as to maintain the balance
thereof are calculated and shown in table 17.

Table 18 is an operations table consisting of unit magni-

tudes of group operations XV to XX. Table 19 is the relax-
ation table for this ring which uses these group operations.
The external forces applied at C and D are given in the first
row of table 19.

A discussion of each step in the relaxation process is given
as follows:

Step 1.—Because of the antisymmetry of the loading and
of the quasisymmetry of the ring about a horizontal axis
operations zxy;=1 and xxix=—1 are applied as a first ap-
proximation to the deflected shape. The forces and moments
introduced are as given in the following table:

" Forces and
moments
N¢ Rc Te Np Rp To
Operation

XVD=1___......... —17.678 | —5.4150 | —12.928 | —1.8576 | —2.2277 | 13.781
XIX)=—1_.._...... —1.8576 2.2277 13.781 [—11.535 6. 2441 |—12.706
Z—Operation K=1_._—19.536 | —3.1873 0.853 |—13.393 4.0164 1.075

Operation K is used to balance the Rc-residual; the same
operation reduces the other force residuals but introduces
large Ne- and Np-residuals.

Step 2.—In order to reduce these moment residuals an
antisymmetrical combination of wy and wy is made, as shown
as group operation L.:

\ Forees and
moments
N¢ Re Tc Np Rp Tn
Operation
(XV)=1. oo —346.56 |~17.678 | —40.062 | —38.489 | 1.8576 | 45.876
(XVIID=1 ... —38.480 | —1.8576 | 45.876 |—392.46 | 11535 |—42.305
"Z—Operation L=1. __| —385.04 |—19.536 5.214 | —430.95 | 13.393 3.571

However, use of operation L by itself would reintroduce large
Re- and Rp-residuals, and therefore operations K and L
are combined so that the Re-residual will be smaller and the
R p-residual eliminated, as shown in the following table:

\\ Forees and i

moments |
NG Ne Ro Te Nb Ry Ty

Operation ~_

—19. 536 5.214 [—430.95 13.393

Operation L=1_______| —385 04 3.571

—3.3346 X Operation
K

—2.844 44. 660
—38.908 2.370 |—386.20 0

—13.393 |—3. 5846
—0.0137

65. 145

=—>Operation M=1_.] —319.90

The new force residuals introduced by operation M are less
than 30 percent of the original residuals and, therefore, the
rate of convergence is felt to be adequate.

Step 8.—The radial residuals at C and D have the same
sign and, therefore, symmetrical displacements vz and vp are
undertaken. It is seen that such a combination would
introduce large tangential residuals at C and D. Therefore,
a tangential displacement of C (D could have been chosen
instead) such as to eliminate the T¢- and 7 p-forces is under-
taken. The forces and moments introduced by the individ-
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ual displacements and by the combination are denoted as
operation N.

Forces and
moments

Ne R¢ Te Np Rp To
Operation
(XVD)=1.. . _._._. —17.678 —5.4150 | —12.928 | —1.8576 | —2.2277 13.781
XIXy=1. .. 1.8576 | —2.2277 | —13.781 11,535 | —6. 2441 12. 706
—0.5_3.2.61_><_(XVII) .__— - m2_ 6.8773 26.709 | —24,406 7.3316 |—26. 587
Z2—-Operation N=1___ 5.811 —0. 7653 0 —14.730 | —1.1400 | —0.100

The use of operation N reduces substantially all the residuals
except Ng.

Step 4.—In order to reduce Ny and at the same time keep
the T¢- and Tp-residuals small, a combination of groups
XV and XX is made. Group XX is included since a force
increasing the residual 7, would be introduced by the use
of XV alone.

S Forces and
\ moments ~ . ~ 7 -
~— [ R¢ 4 D D D

rati ~
Operation ~__

V)=l .. -—346. 55 ~17.678 | —40.662 | —-38.489 1.8576 | 45.876
_0.91279><(XX) ,,,,,,,, 41.875 12. 579 45.616 | —38.616 11,597 [—45.876
Z—Operation O=1_____ —304. 67 —5.099 4,954 | —77.105 | 13.455 0

Steps 5 and 6.—After operation O is used, the largest
force residual is approximately 6 percent of the applied
forces and the moment residuals are small. It was con-
sidered desirable to reduce further the force residuals.
Therefore, operation | was used again so as to reduce FRp,
the largest force residual, and then XVII was used so as to
reduce the resulting Te-residual. After this sixth step the
largest residual of 4 percent of the external force is con-
sidered small enough.

A check table using the total displacements is used as a
check on the accuracy of the combined operations and on
the relaxation table. The total individual displacements are
calculated as discussed in the previous two examples and are

as follows:
v4=—596.18 X 107% in.

wp=236.779>X107% radian
v5=0.22394 <1078 in.
Uz=—2304.69X107% in.
we=—14.32X107° radian
te=561.66 1072 in.
Ue=—114.61X107%in.
wp=—18.4X10"° radian (50)
vp=—133.66X1072 in.
Up=3.7242X107? in.
wr="7.4813X107% radian
vp=30.507 <1072 in.
Up=—41.708 1073 in.
vr=59.979 X 1073 in.
1¢=114.52 1073 in. J

It is pointed out that certain of these displacements differ
considerably from those given by the exact solutions of the
matrix-calculus and growing-unit methods, mainly because
the relaxation solution is approximate and in it joint G is
permitted to displace radially.

The unknown reactions given by the foregoing relaxation
procedure are:

N,——2851.1 in.b ]
T,=380.21 b
Nr=140.16 in.-lb

(51)
Tr=-—224.09 1b
Ng=—440.45 in.-1b
T¢=648.18 Ib )
Consideration of the equilibrium of the half ring gives:
2Fy=380.21+224.09—648.18=—43.88 1b
EFV:O
(52)

EM=—2851.14+380.21(57.941)—440.45--
140.16—224.09(7.0294) — 18,635
= —1331.8 in.-lb

The moment equilibrium unbalance is approximately 7 per-
cent of the applied moment and is considered satisfactory
for engineering purposes. If a more accurate representation
of the final deflected shape and consequently of the bending-
moment diagram is desired, several more operations in the
relaxation table could be undertaken and the residuals at
C and D further reduced.

The bending-moment diagram given by the reactions of
equation (51) is shown in figure 9 along with that of the
exact solutions. The external unbalanced moment of 1331.8
inch-peunds is applied linearly along the ring as a distributed
moment. If this unbalance is not distributed in this man-
ner, it would be concentrated at either joint A or joint F,
depending on the direction in which the bending moments
are calculated, and would lead to large errors in the bending
moment in the neighborhood of that joint. It is seen from
figure 9 that the agreement between the exact and relaxation
solutions is good.

It is pointed out that, by slightly modifying the determi-
nation of the influence cocfficient for joint D when E is fixed
and F and G are free to displace radially, a table similar to
table 17 could be established and solved by matrix-calcu-
lus methods. The slight modification is to make V=0
in the equations corresponding to table 17. Such a solution
is essentially the growing-unit method, except that the ring
is combined from joints C and D to A and F, respectively,
rather than from A to F. The total displacements in each
degree of freedom will be the same in each approach.

CONCLUSIONS

This report contains recommendations as to the choice of
the most expeditious method of solution of the simultaneous
linear equations represented by the operations table and the
external loads. The operations table is first established in
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FI16URE 9.—Bending-moment diagram for oval-shaped ring with internal bracing. Positive bending moment decreases curvature,

accordance with Southwell’s suggestions and, together with
the external loads, defines completely the problem of stress
distribution in a reinforced panel or of the moment distribu-
tion in a fuselage ring. However, the following generalized
suggestions can be made:

1. In most reinforced-panel problems the use of the re-
laxation procedure is advantageous.

2. Solution of the equations defining a reinforced-panel
problem by means of the electric analogue is advisable when
many closely related problems have to be investigated.

3. Ring problems are best solved by matrix methods.

4. In very complicated ring problems a combination of
matrix methods with the growing-unit and relaxation methods
may become advisable.

PoryreEcENIC INSTITUTE OF BROOKLYN,
BrooxryN, N. Y., June 25, 1947.
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TABLE 3—RELAXATION TABLE FOR REINFORCED
PANEL—PROCEDURE 2

{Forces are in 1b; displacements, in in. X 10~

TABLE 1.—OPERATIONS TABLE FOR REINFORCED PANEL \ Force
[Forces are in 1b; displacements, in in. X 10~4] ~— Ya Ya Ye Yr Yy Yu Yw Yo
Operation ~
Force >~
Y4 Ys Yr Yr Y, Yx Y~ Yo External forees. ......| =120 || oafemmao e 60 60
Operation Vblock 1=—2.5._. 10 —10 20 —20 20 —20 10 [—10
=110 -10 20 -20 20 —20 70 50
6. 8 R - Pa==-2160. ... 110 —4.3| —10L.3] —4.3 0 0 0 0
2.00
1.6 0 —14.3| —81.3[ —24.3 20 —20 70 50
4.00 (1)=-—1.482..______... 5.9 —5.9 81.3| —8.9| —69.4| —3.0 0 0
6. 8
2.00 5.9 —20.2 0 —33.2| —49.4) —23.0 70 50
- (2)=—0901.._._____. 3.6 —3.6 7.2| —7.2 49. 4| —5.4[ —42.2) —1.8
btock 1=1 -oooo. 9.5 —23.8 7.2) —40.4| 0 | —28.4| 27.8] 48.2
VA=UVRE=VJ= —4.00 4.00] —8.00 Oblock 2= —1.850..__._. —7.4 7.4 —14.8 14.8| —14.8 14.8] —7.4 7.4
vy=1 ——
Uhloek 2=1 Lo 2.1 —16.4 —7.6| —25.6] —14.8| —13.6 20.4{ 55.6
PR=0F=10 4,00 —4.00 8.00; —8.00 8.00| —8.00 4.00) —4.00 vp=—0.297_____.____. —0.6 16. 4 —~0.6] —15.2 0 0 0 0
vo=
(1) va —4.00 4.00) —54.8 6. 00 46.8 2,00 -... .- 1.4 0 —8.2| —40.8| —14.8| —13.6 20.4| 55.6
2)va=vEg=uvs —4.00 4.00] —8.00 8.00| —54.8 6. 00 46.8 2.00 (3)=—0.689......___.. —2.8 2.8 —4.1 40.8| —1.4| —35.3 0 0
(3) vp=vr=1._... 4.00| —4.00 6.00[ —59.2 2.00 51.2 . e
(4) vp=vp=rx=1 4.00{ —4.00 8.00| —&00 6.00] —59.2 2.00; 51.2 —1.3 2.8 —12.3 0 —16.2| —48.9 20.4f 55.6
(4)=—0.825...__..... —3.3 3.3 —6.6 6.6 —5.0 48.9| —1.6/—42.3
—4.6 6.1 —18.9 6.6 —21.2 0 18.8| 13.3
Oblock 1=—1.08..__.__ 4.3 —4.3 8.6/ —8.6 8.6| —8.6 4.3 —4.3
—0.3 1.8 -10.3] —2.0| —12.6| —8.6 23.1 9.0
(D)=—0.188......_.___ 0.8 —0.8 10.3] —1.1] —8.8 —0.4 0 0
0.5 1.0 0 —3.1 ~21.4] —9.0 23.1 9.0
(2)=—0.390.......___ 1.6) —1.6 3.1 =3.1 21.4| —2.3] —18.3| —0.8
0412 2.1 —0.6 3.1 —6.2 0 3 -11.3 4.8 8.2
- - - Ay . Ublock e=—0.412.._____ —1. 6 1.6 —-3.3 3.3 —3. 3.3] —1..6 1.6
TABLE 2—RELAXATION TABLE FOR REINFORCED o
Nl 0.5 1.0 —0.2f —2.9| —-3.3] —8.0 3.2 6.6
PAN EL—PROCEDURE 1 @)=—0.135...___.... —0.5 0.5 —1.1 1.1 =0.8 8.0 —0.3] —6.9
Cyecles of operations shown should be repeated until residuals are considered negligibly small. 0 L5 -3 —1.8 —-41 0 2. 91 —0.3
Forces are in Ib; displacements, in in.,X10-4]
\ F
orce i TABLE 4—RELAXATION TABLE FOR REINFORCED
Yi | Y Ye Yr Yy Y | Yn Yo PANEL—FIXED ENDS
Operation ~— 2
>~ [Forces are in 1b; displacements, in in.X10—4]
External forees..__.-- B {0 SR S ISV I S 60 60 Ay
Tolock 1= —2.5 oo 10| —10 20| —20 20 | —20 10| —10 ~ Force
—110 —10 20 —20 20 -—20 70 50 Ya Y Ye Yr Y Yk Yy Yo
0p=2.35 oo 110 51 —238 9 110 5 0 0 Operation ™~
0| —=5| —218} —11 130 | —15 70 50 >~ ‘ —_
Ur=4.65 oo 0 0 218 9| —473 19 218 9 External forees. ... .- 120 o
Py - Pl Y P N = Da=—2.36_ .- 120 | =47 |~110.6 | —4.7 i L
ON=T.33 e 0 0 0 0 343 14 | —372 14 0 T —110.6 | =7 |
=202 ... 1| - —12.1 | —¢ —4.0 ...
0 5 0 o 0 18 84 3 ) 2.0 - 8, 8.1 110.6 12.1 94 4_ 2 S0 (I R
Doloek 2=3.5 _o-oooooe 14| —14 28| —28 28 —28 144 —14 8.1 |—12.8 0 |—16.8| —94.4 | —0 .. ...
= 1,72 6. —6. —13. — —
14 1o 28 —30 28 “10 —70 59 2 1.723. . 6.9 6.9 13.8 13.8 94, 4 10.3 80.6
0F=0371 oo 1 19 1] —41 1 19 0 0 15.0 |[—19.7 | 13.8 [—30.6 0 |—14.3 [—80.6
=—0.35 - — — R
" 5 P —— » Pl I s vp=—0357. .. ... 0.8 | 19.7 { —0.8 {~18.3 ... ||
or=1.385 .. ... 0 0 3 71 5| —153 3 71 14.2 0 13.0 |—48.9 0 |—14.3 [—80.0
=—0.8 L] -3 3. - L9 | —1.
" 5 - 5 5|~ | <o | 10 (3y=—083._.._... 34| 3.4| —51| 489 | —L7{ 43| |-
20=2.81. ... - 0 0 0 0 5| 144 5| —156 10.8 | 3.4 791 0 —1.7 |{—56.6 |—80.6 | —3.4
=—0.959..........| —3. 3. —7. 7. —-5.7 5 —1.9 |—
5 5 P 5 " PN e R (4)=—0.959 3.8| 3.8 7.6 T.6| —57] 5.6 | —1.9|—49.1
Ohlock 1=1.0 ... —4 4 —8 8 -8 8 —4 4 7.0 7.2 0.3 7.6 | —7.4| 0 {—82.5|—525
1 4 2% s 31 P 6 9o 04=0.1375._ . _..o.... —7.0 0.3 6.4 0.3 [ PR PR e
vg=—0235 ... —11 0 24 —1 —11 0 0 0 0 7.5 6.7 7.9 7.4 0 _82.5 |—52.5
=0.124._.-........| —0.5 . —6.7 .7 5. 2
o 4 m - 2 s | —a6 | —22 (1)=0.124 0 0.5 6.7 0.7 5.8 0.2 oo
oy=—1.025 .. ...—.... 0 0 —48 —2 104 —4| —48 —2 —0.5 8.0 0 861 —1.6 0.2 |—82.5 [—-52.5
2)=—0.0292..._..___ L1 | =0, L2 —0. . —0.: - —
0 3 0 5 194 3| —11s s (2) 0.029 0 0.1 0 0.2 1.6 0.3 1.4 0.1
on=—2.05. ... .. 0 0 0 04 —124 -5 135 —5 —0.4 7.9 0.2 8.4 0 —0.1 [—83.9 [~52.6
- yp=0.143 ... _. L —7. . 7.
0 A 0 5 0 3 a1 29 vp=0 0.3 7.9 0.3 T3 |
—0.1 0 0.5 15.7 0 —0.1 |—83.9 |—52.6
(3)=0.265.__ _...___._ 1.1 ] —1.1 1.6 |—15.7 0.5 136 |occmma]aooaacn
1.0 | —1L1 2.1 0 0.5 13.5 [—83.9 |—52.6
=0.228_. ... 0.9 | —0.9 1.8 —1.8 1.4 |—13.5 0.5 11.7
1.9 -2.0 3.9 —L8 1.9 0 —R3.4 {—40.9
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TABLE 5.—OPERATIONS TABLE FOR REINFORCED PANEL—GROWING-UNIT METHOD

[Forces are in Ih; displacements, in in. X10-4]

Yr Yr Y, Yk Yw Yo Yr Ys
46. 8 b2 R RS (PO U,
2 5.2 | ... | ... -
—101.6 4 46. 8 2 -
4 —110.4 2 5L2 | .| s
46.8 2 —101.6 4
2 51.2 4 —110.4
e s o e (S 46. 8 2 4
@) vo=1_._ | cemiiiin | e | e | e 2 51.2 —110. 4
(9) 0.0362X(2)________._______ 0.07 L8 | ool | cicceeie | eeciiiee | emeeeoo
(10) (D)4(D..-. 46,9 3.8 -
(11) 0.921X(1).. 5 43.2 1.85 -
{125 0.0695X(2)___ 0.1 3.5 -
(13) (3)+(11)+(12)-. —58.3 9.4 -
(14) 758 X ( 3.5 0.2 .
(15) 0.923X(2)._. 1. 85 47.6 -
(16) (94-(14)4-Q1. 9.4 —62.6
(17) 0.828X(18) ... | e | el —48.3 7.9 38.8 1. -
(18) 0.158X(16) ... - 1.5 —9.9 0.3 81 | eiae | eeoeeea
(19) B+ +(18) - 0 0 —62.5 13.
(20) 0.170X(13).... - —9.9 1.6 8.0 0.3 | oo | oeas
(21) 0.845X(16)..._ _- 7.9 —52.8 1.7 43.2 | L. | aaio.oo
(22) (8)4(200+(21) .- 0 0 13.7 —66. 2 51,
(23) 0.79X(19) .._._ —49. 4 10. 37.0 .
(24) 0.19X(22)..___ 2.6 —12. 0.38 3
(25) ()+(23)+(24) - 0 0 —64.2 3
(26) 0.21X(19) .. ____________ . —13.1 2. 9.8 A
(27) 0.81X(22) ... ... ... | ... .. 11.1 —54. 1. 61 41.2
(28) B)+(26)+(27) .| | il | o 0 0 15. 4 —68.8

TABLE 6.—RELANATION TABLE FOR REINFORCED PANEL-—-GROWING-UNIT METHOD
[Forces are in 1b; displacements, in in. X 10-4]
\\ Force
~
\\
~ Ya Ys Y=r Yr Y, Y~ Yo Yr Ys
Operation \
External loads._ . _____________________ e 1| I IR O R [PURUE, U I S
—237 X (10) .. -l 120 111 Zo | CTIID ol T i
0 - —111 et I P I U R R
—1.975 X (13) . .| ... 115.2 —18.8 —92.5 —4.0 | -..._. [ O .,
—0.444 X (16) ... | ..o | L.o. —4.2 | ... —0.9 =227 b ool | ciciie | e | e
0 0 —93. 4 —26.7 PP N I
—1687 X (019) .| oo | | oo B 103. 7 —22.9 —77.6 —3.3 | .o | oo
~0.742 X (28) .o i el | e | i | e —10.2 49. 6 —1.5 —37.9 | ..o | -o-..
____________ 0 —79.1 —41.2 P I,
Bl I 073 Nty [ I R I I R 93.2 —22.4 —67.9 -2.9
—0.925 X (@8) ool oo | b ) | e | el —14.2 63.6 —1.8 —47.4
0 0 —69.7 —50.3
TABLE 7.—OPERATIONS TABLE FOR CIRCULAR RING
Forces and
moments
N4 T4 Np Ra Thq N¢ Tc
(in.-1b) (b) (in.-1b) b) by (in.-1b) (Ib)
Operation
(D wa=10"8radian________________________ —281. 95 —49. 079 —29. 966 —4,733 64.675 | |eeooao
(Qua=10"3in__.__________________________ —49.079 —52, 296 64. 675 -22, 441 SL6I6 ). | ..o
(3) wp=10"2 radian_ - —29, 966 64.675 —439. 849 31.443 —50. 642 56. 5117 6.632
(4) =103 in_. . 3 31.443 —12.338 20. 14 8.842 0. 524
(5) up=10"3in _ —50. 642 20. 14 —52.618 6.632 0.0685
(6) we=10"3rad 56, 5117 8.842 6.632 —157. 899 —1. 563
(7) ue=10"3in____ 6,632 0. 524 0.0685 -1. —0.322

23
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TABLE 8—RELAXATION TABLE FOR CIRCULAR RING

Forces and
moments
4 T4 Nag Ry Ty N¢ Tc
(in.-1b) (1b) (in.-1b) (1b) (1b) (in.-1b) (1b)
Operation
External forces.. —1.84 —8.75 —55.0 59. 5 38.1 —53.1 —23.9
—0.00778X(A) ... 1.84 0 0.7 —0.1 —0.1 0 0
0 —8.75 —54.3 59. 4 38.0 —-53.1 —23.9
—0.2X(B) e 0 8.75 —14.0 4.3 -8.0 0 0
0 0 —68.3 63.7 30.0 —53.1 —23.9
—0.353 X (C) e oo 0 0 —8.6 —2.2 —2.2 3. 1 0
0 0 —76.9 61.5 27.8 0 —23.9
— 77 8K (D) o e 0 0 —472 —34.0 —0.2 0 2.9
0 0 —549 27.5 27.6 1] 0
2 O8XAE) - e 0 0 549 —27.5 —27.5 0 0
\ 0 0 0 0 0.1 0 0
} Check-table results. ... ... 0.0171 0.0030 0. 5095 —0.0043 —0.0053 —0.0726 —0.0121
TABLE 9.—OPERATIONS TABLE FOR EGG-SHAPED RING
~ Forces and
\ moments
~— 3
~. Ry Ng RB Ts Ne Re Tc Rp
~ (1b) {in.-1b) (1b) (1b) (in.-1b) (ib) (Ib) (b)
\\
Operation \
(1) pa=10"4in._ . - —3.34833 8.92216 —2.69614 3.96771 |-
(2) w =10~ radian 8.92216 —327. 866 11, 4697 —13.1014 8. 10267
() vp=10-4in..__ —2.69614 11. 4697 —4. 00991 3.4352 0. 66158
(4) up=10~*in__ 3.96771 —13.1014 3.4352 —30. 9556 1]
(5} we=10~tradian. ... .o | —61.242 —8.10267 0 —2. 95622
(6) vc=10"4in_._. 8.10267 0. 66158 0 —1. 80205
(7) ue=10"4in__ 0 0 26. 2058 —0. 88929
(8Y ¥p=104 IN_ .o mm e o || —1.11900

TABLE 10.—RELAXATION TABLE FOR EGG-SHAPED RING

™~ Forces and

\ moments
~. Ra Np Rn Ty N¢ Re Te Rp
\ (Ib) (in.-1b) (1) (b) (in.-Ib) (Ib) an) an)

\

Operation \\
External forees_ ... .. ..o . —500 4] 0 (4 4] 0 0 —500
Z149.2X (1) 500 —1330 402 —592 0 0 0 0
0 —1330 402 ~542 0 0 0 —500
CAOBXRY e 0 0 0 0 2960 451 418 500
0 —1330 402 —502 2060 418 0
13360 CF) - o oo e 0 0 0 29 —2485 —431 63 0
0 —1330 402 —563 475 0 481 0
256X (1) . .- 0 1615 —402 62 0 138 -3 0
0 285 0 —501 475 138 473 0
409X (F). . ... .. VTR 0 0 0 9 —760 —138 19 0
i 0 285 ‘ 0 ‘ 462 —285 0 492 0
—OAX) s e ‘ 0 | -2 4ca 9 0 —492 0
| 0 b 309 e ! 1 | —26 [ 0 | 0 | 0

Cheek 1able oo oo e \ —0. 465 s00.971 | -2 | 0. 938 ‘ ~280.405 | —0. 202 t —0.351 l —0.279
N——— | (T 1 (A A AW
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TABLE 11.—OPERATIONS TABLE FOR OVAL-SHAPED RING

Forces and
\ moments

Operation

Rp
(Ib)

Ng¢ Re¢
(in.-1b) (lb)

wp=10-3 radian.
vp=10"3in__
up=10=%in_._
w g=1073 radian.
pg=103in.. ..
ug=103in. .
vp=10-%in._.
vG=10"3in___________ . ________..

Forces and
moments

Operation ™~

wp=10"3radian ... ... ... .. ... .......
vp=10"3in ._._
up=10"3in.__

v4=10"3in e R

Rp
(b)

o

Ng
(Ib) (in.-1b)

Rg Te
(1b) (Ib)

Rr
(Ib)

RG
(b)

we=10-3 radian. 1. 8576 45. 876 -
ve=10"3% in. —2.2277 13.781 -
—13.781 49.974 | . i | e | eeeoaaan -
0 —77.623 N -
—9.9231 0 . -
0 —100. 34 A -
w g=10-3 radian. —1.8576 45. 876 . —5.9020
vp=10"3in.__. —2.2277 —13.781 3 —4, 5778
wrg=10"3in. _ 13.781 49,974 —126.37 —14. 662
vp=10"31in . T 3 —7.1310
pe=10"31n_ . e s | e oot —1.3355 0

TABLE 12.—~GROUP OPERATIONS IN GROWING-UNIT METHOD FOR SEGMENT AB

N g=—454.341 p+6.72380 p—78.4111 p—(R.I1.8.

in N g—cquation) =0

Rp=6.723% g—12.0020 g+0.556001 3—(R.H.8. in Rn—equalion):()]
Tp=—78.411w 5+0.556900 5—81.510u p— (R.H.S. in T p—cquation) =0

!
Group I 11 111 v
\\ Displacement
~
\\
~
\\ pa=10"3in. we=10-3 radian ve=10-3in. we=10-% in,
\ we=vc=uc=0 va=rve=uc=0 va=we=uc=0 va=uwc=vc=0
~
~
~
Operation o \\ o
(~-10%) Xright-hand sidc in equation for:
i - 5.9020 —38. 489 1. 8576 45. 876
— 4. 5778 —1. 8576 —-2.2277 13. 781
14. 662 45. 876 —13.781 49.974
(10%) Xdisplacements of joint B:
wa, radian . .. —0. 026434 —0. 21631 0. 035554 0. 017847
vg, in__. —(. 38424 —0. 23971 —0. 17353 1.1763
W, I e e 0. 19549 0. 74157 —0. 19720 0. 58253
Resultant foreces and moments
4,1b —2. 6618 10. 699 —1.8871 3. 2615
Ng, in.-1b 10. 699 —389. 5t —10.093 —583.771
Re,1b__. —1. 8871 —10. 083 —6. 7529 —10. 615
Te, 1b 3.2615 —53.771 —10. 615 —54.199
Np, in.-1b 0 —38. 489 —1.8576 45. 876
Rp, 1b 0 1. 8576 —2.2277 —13.781
Tp, 1b 0 45. 876 13.781 49.974
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TABLE 13.—GROUP OPERATIONS IN GROWING-UNIT METHOD FOR SEGMENT ABCD

Ne=—380.56z11—10.093z111—53.771z1v— (R. H. 8. in N¢)=0
R¢ =—10.093711—6.7520zn1—10.616x1v—(R. H. S.in R¢)=0
Teo=—>53.771z11—10.6152111—54.19971v — (R. H. 8. in T'¢)=0

Group \ VI ‘ VII VIII
\ Displacement
~.
~
~
~
\\ D=1 wp=10" radian | op=10-3 in. wp=10-¢ in.
~ wp=0p=up=0 (D=op=up=0 | (D=wp=up=0 | (D=wp=0p=0
~
~
\\
Operation \\
(—1) X right-hand side in equation for:
i 10. 699 —38. 489 1. 8576 45, 876
—1.8871 —1. 8576 —2,2277 13.781
3.2615 45. 876 —13.781 49,974
0. 021497 —0.25291 0.046327 —0. 0099019
—0. 53843 -—2.3436 0. 10521 0. 85346
0. 14430 1. 5564 —0.32084 0.76472
—0. 94505 6. 7028 —0. 74924 0.77749
6. 7928 —346. 88 —16.697 —43. 745
—0.74924 —16. 697 —5.6500 —12, 458
0.77749 —43. 745 —12, 458 —50. 817
0 —38, 489 -18. 576 45, 876
0 1. 8576 —2.2277 —13.781
0 45.876 13.781 49, 974

TABLE 14—GROUP OPERATIONS IN GROWING-UNIT METHOD

Ng=—346.88ry1—16.69zvir —43.745rvir—(R. H. 8. in Ng)=0
Rr=—16.697rv7—>5.6500z vrr—12.4587yr1r—(R. H. 8. in Rg)=0
Tr=—43.745zvr—12.458z v;1—50.817zvirr—(R. H. 8. in Tg) =0,

FOR SEGMENT ABCDE

]

Group IX X X1 XI1
~
~ Displacement
\\
~
\\ (V)=1 w g=10~3 radian vg=10"3 in. w g=10-3 in.
~_ Wwg=vrp=ug=0 (V)=ve=ug=0 | (V)=wg=ug=0| (V)=wg=tg=0
~
\\
~
Operation ~
~

(—1) Xright-hand side in equation for:

6. 7928 —38. 489 1.8576 45. 876
—0. 74924 —1.8576 —2,2277 13.781

0.77749 45,876 —13.781 49.974

0.028042 —(. 16186 0.037474 —0.0022427
—0. 42660 —4.6760 0.35713 0. 59436

0.095744 2. 1885 —0. 39100 0. 83963
~0. 36050 4.10565 —0.31703 0.19226

4, 1055 —533.92 —38.099 —29.579
—0.31703 —38.099 —49. 295 —53, 432

0.19226 —29. 579 —563. 432 —76.322

0 —5.9020 —4. 5778 —14. 662

0 16.025 1.3355 —1.3355
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TABLE 15,—DETERMINATION OF TOTAL DISPLACEMENTS IN GROWING-UNIT METHOD

27

Related tables

w B, v8, and u g from table 12

(1Y), (III), and (IV) from table 13 or 15

Prime displacement

\ om0 in,
I

Group operations

wc=10-% radian

vc=10"3 in.

I juss

#e=10-in, T1=1

v v

wp=10-3radian
VI

vp=10-% in,

VII

up=10-3 in.

© VIII

Magnitudes of
group displace-
ments explicitly
used in
balancing

0
1. 0476
217. 61
- —48, 436
0. 021497 0
—0. 25201 —3. 3100
0. 046327 —328.09
o i
—0.19736 1. 7552 2.9219 1885 11.184
0. 010939 —0. 38395 —0. 35526 0. 35713 —0. 39100 —51. 518
0.019788 0. 78438 0. 44790 0. 59436 0. 83963 29, 771
—0. 0080407 —0. 50331 0. 45975 —0. 46836 0.16615 —605. 73
—0. 0017462 —0. 64546 —0.47005 | .. .. ....._ —0. 059576 —0. 68618 —44, 646
Total displacements. ...____._..__..._. —605.73 —11.444 664. 55 —72.286 —605.73 —22.975 —04.731 on.127 | ..
Related tables (VI), (VII,, and (VIII) from table 14 or 15 (X)), (XI), and (XII) from table 15
\\ Prime displacement
\\ Magnitudes of
~ group displace-
~_ ry=1 wg=10-3 radian vr=10"%in. wg=10"%in, rrx=1 op=10"% in. ments el:;p.licitly
used in
\ 1X X X1 XI11 X111 X1v balancing
\\
. \
Group operations \
0
1.0476
217, 61
—48. 436
0
-3.3100
—328. 09
90. 518
0
11,184
—51. 518
29,771
0. 00y4398 0. 035128 —605. 73
D N SR -0.017182 0. 50354 —0. 53797 —44, 646
Total displacements . ... .o ... —605.73 6. 2331 —42. 620 32, 511 —605.73

—44. 646

TABLE 16.—GROUP OPERATIONS IN RELAXATION METHOD FOR SEGMENT ABCD

Np= 5.902004 —454.34w s+ 6.72380p5— 78.411v 3—(R.H.S. in N

B)=

Rp=—4.577804-46.7238w p— 12.093v 3+0.55690u s—(R.H.8S. in Rp)=0
Tp= 14.66204~78.411w p+0.556900 p— 84.510u s—(R.H.S. in Tp) =0

[RA =—7.131004+5.9020w p— 4.5778v B

- 14.662u 5—(R.H.S. in RA)=0]
i 0

Group XV XVI XVII
———
Te— Displacement. wc=10"% radian ve=10-3 in. %e=10-% in.
) o TT— 0 0
peration OC=UC=WD=Vp=UD= We=UC=WD=Vp=UD= we=Yc=wWp=Vp=up=0
—_—
(—10%) X right-hand side in equation for:
0
—38.489 1, 8576 45. 876
—1. 8576 —2,2277 13.781
45. 876 —13.781 49,974
(103) X displacements of joints A and B:
Va4, in 4.0195 —0. 70895 1, 2253
—0. 32255 0. 054293 —0.014540
—1.7842 0. 098882 0. 70554
1. 5277 —0. 33579 0. 82205

—346. 56 —17.678 —40. 662
—17.678 —5.4150 —12. 928
—40. 662 —12.928 ~—50. 203
—38.489 —1, 8576 45. 876
1. 8576 —2.2277 -—13.781
45. 876 13. 781 49. 974
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TABLE 17.—GROUP OPERATIONS IN RELAXATION METHOD FOR SEGMENT CDEF-G

N = —649.24w g —18.0560 g —07.080u g —5.90200p-+16.02506—(R.H.S. in Ng) =0
R g=—18.0561 x—53.9570 x —40.533u x—4.57780p+1.33550¢—(R.ILS. in Rp) =0
Tr=—67.080w r—40.5330 x —126.371 g — 14,6620, —1.335506— (R.H.S. in Tx)=0

R p=—5.9020u —4.57780 p—14.662u g—7.13100x
R ¢=16.025w #4-1.33550 x—1.3385u &

—(R.H.S. in Rr)=0

—1.88860¢g—(R.H.S. in Rg)=0

Group XVIIL XIX XX
\\ Y s B .
TT— Displacement wp=10-3 radian op=10"% in. wp=10-3in.
Operation T— we=vc=Uc=0p=up=0 we=ve=uc=wp=up=0 we=ve=uc=wp=up=>0
\
—38.489 —1. 8576 45,876
1. 8576 —2.2277 —13.781
45, 876 13.781 49.974
0 0 0
0 0 0
(103) X displacements of joints E, F, and G:
w g, radian - —0.1703 —0. 032775 —0. 008775
i —0. 42970 —(). 19002 —0. 78327
0. 74456 0. 23168 0.79421
—1.1141 —0. 32667 —1.1229
—2,2753 —(. 57676 —1.1900
—38. 484 1. 8576 45. 876
—1. 8576 —2.2277 13.781
45. 876 —13. 871 49.974
—392. 46 11. 535 —42. 305
11. 535 —6, 2441 12,706
—42.305 12,706 —50). 259
TABLE 18.—GROUP-QPERATIONS TABLE FOR RELAXATION METHOD
[Forces and moments at joints A, B, E, F, and G are zero for all operations]
\\ Forces and moments !
~
\
~. N¢ Rc Tc N Rp Tp
~ (in.-1b) (Ib) (1h) (in.-1b) (1b) (Ib)
—346. 45 —17.678 —40. 662 —38. 489 1.8576 45. 876
—17.678 —b. 4150 —12.928 —1. 8576 —2.2277 13.781
-—40. 662 —12.928 —50. 203 45. 876 —13.7 49,974
—38. 489 —1.8576 45,876 —392. 46 11, —42.305
1. 8576 —2,2277 —13.781 11. 535 —06. 2441 12.706
45,876 13.781 49. 974 —42.305 12. -50. 259
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TABLE 19.—RELAXATION TABLE FOR GROUP OPERATIONS
Forces and moments
Ste R Ng Rp Ts e Rc¢ Tc Np
P (b) (in.-1b) (1b) Qab) (in.-1b) (1b) (1b) (in.-1b)
Operation \
: Externalloads__._______________ - 0 0966 —259 0
) S BO2X (K e e —5900 —966 258 —4050
—5900 0 -1 —4050
2 —18.4X (M) e e e e e 5800 164 —44 7100
0 164 —45 3050
F S, 214X (N - oo e e 1246 —164 ] —3150
1246 0 —45 -100
4. 4.08X(0) mn e e e e —1246 —21 20 —314
0 —21 —25 —414
L . =18 TX(KY e o el 306 50 —13 210
306 29 —38 —204
6 .. —0.76X(XVID) e 31 10 38 —35
337 39 0 —239
Check table. ... 0.001 0.310 0.025 0.156 324.76 42. 600 —0. 450 —228.26
\ Forces and moments
~
\\
Step ~— Ry Tn VE Ry Te Rp Rg
! ~- (1b) (Ib) (in.-1b) (Ih) (1b) (Ib) b)
~
\\
Operation \\
Externalloads .. .. ... . ... .. . . _. —9606 =259 | e .
N 302X (K)ol 1218 326 | e ...
252 67 | e e
2 . —=184X (M) - il 0 L O S ) P
252 67 | e e
b S, 21X (N el —244 "2 O O LU RN DRI IO
8 Wy AR PRt FUR NP PIROUOTY RPN
4.l 408X (O) . 55 L g USR] (RPN TP
63 46 | e e L
S =1 T XKy ... —63 ~17 i e
[ 29 e e e e
L —OT6X(X VI .. 10 =38 et e
10 s 2 (R J N SR [ P
Check table ____ ... 5,390 —10. 650 —1.734 —0.001 —0. 750 —0.003 0.047
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PosxtLve dJi:ectlons of axes and angles (forceS*and moments) are shown by arrows =~ .

o~ | } b — \ « =, N W — ~ — "\ . : \\ o
. — —— — e , R <
) Lo . Aiis -1 S P /\Moment abou‘b axig- -," ~ . Angle * | = Velocities o
Co- - — 7~|-Force [—— — p — —N -
L TR L Gl (VI EELEES R Tinewr |- | -
s e Symi- | ¥© A ym- | 1 Positive” | -Designas |Sym- compo- . i
‘ Designation ', | "for " | symbol | Designation 75~ |> Foeitive . | Destgna Zhol z}nt along| Avgulazf” ..
") RN S D ~ T s A - .
Cs ’\ - - — s —— s
o X | Roling. 2 o1 | ¥z - w » o
o ~¥" .| Pitching_._1 M |, Z2—3X T a '
Z 4Yawmg ..... N[ X—Y W T S
A . N ; - N - -~ o\ -
- - - NS C - - o L
¢ ¢ ) a _ Angle of set of control-surface (rela.tlve “to- neutral
~ C”b—-’ L. - . O '0 N -, = posmon), (Ind1cate surface by proper subscnpt) T
zJ—gb,S' m‘ _qb:S’ N L Xm L . L. = BN =
. (uolling) (pltcblng) T (yaving) B P A S
f//, - R o~ Cu PROPELLER SYMBOLS TN e T e e LT
-D Diameter ."-- - - o e N T o ) P T T T
SR N = - ‘
p"  Geomotric pitth T ey _P Power«absolute coeﬁiclentOP Db N r
" p/D  Pitch ratio . - L AR NP . IR
,Z{,Z, - Inflow velocitj N ct [ e N AL ~, Speed—povvﬁr coefﬁclent— %Vz B . Sl
" V¥; . Slipstream veloeity -© 7 . \T/ : S »‘Efﬁclency\ - T _; o _
- T . Thrust, absolute coeﬁiclent/O'T—~w 7D - - o ReVOquODS\Pel' second, 1‘Ps ' " ~
T s Eﬁectlve hehx an, le—tan“(——) \
Q 'I/‘orque absolute coefﬁment C’o— QD5 M gﬁ 2 S
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